ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically induced topological spin-valley Hall effect for exciton polaritons

106   0   0.0 ( 0 )
 نشر من قبل Rimi Banerjee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider exciton-polaritons in a honeycomb lattice of micropillars subjected to circularly polarized (${sigma_pm}$) incoherent pumps, which are arranged to form two domains in the lattice. We predict that the nonlinear interaction between the polaritons and the reservoir excitons gives rise to the topological valley Hall effect where in each valley two counterpropagating helical edge modes appear. Under a resonant pump, ${sigma_pm}$ polaritons propagate in different directions without being reflected around bends. The polaritons propagating along the interface have extremely high effective lifetimes and show fair robustness against disorder. This paves the way for robust exciton-polariton spin separating and transporting channels in which polaritons attain and maintain high degrees of spin polarization, even in the presence of spin relaxation.



قيم البحث

اقرأ أيضاً

Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic materials. Both, akin, yield the possibility to create devices directly harnessing spin- and polarization as information carriers. Atomically thin layers of transition metal dichalcogenides provide a new material platform which promises intrinsic spin-valley Hall features both for free carriers, two-particle excitations (excitons), as well as for photons. In such materials, the spin of an exciton is closely linked to the high-symmetry point in reciprocal space it emerges from. Here, we demonstrate, that spin, and hence valley selective propagation is accessible in an atomically thin layer of MoSe2, which is strongly coupled to a microcavity photon mode. We engineer a wire-like device, where we can clearly trace the flow, and the helicity of exciton-polaritons expanding along a channel. By exciting a coherent superposition of K and K- tagged polaritons, we observe valley selective expansion of the polariton cloud without neither any applied external magnetic fields nor coherent Rayleigh scattering. Unlike the valley Hall effect for TMDC excitons, the observed optical valley Hall effect (OVHE) strikingly occurs on a macroscopic scale, and clearly reveals the potential for applications in spin-valley locked photonic devices.
Atomically thin crystals of transition metal dichalcogenides are ideally suited to study the interplay of light-matter coupling, polarization and magnetic field effects. In this work, we investiagte the formation of exciton-polaritons in a MoSe2 mono layer, which is integrated in a fully-grown, monolithic microcavity. Due to the narrow linewidth of the polaritonic resonances, we are able to directly investigate the emerging valley Zeeman splitting of the hybrid light-matter resonances in the presence of a magnetic field. At a detuning of -54.5 meV (13.5 % matter constituent of the lower polariton branch), we find a Zeeman splitting of the lower polariton branch of 0.36 meV, which can be directly associated with an excitonic g factor of 3.94pm0.13. Remarkably, we find that a magnetic field of 6T is sufficient to induce a notable valley polarization of 15 % in our polariton system, which approaches 30% at 9T. Strikingly, this circular polarization degree of the polariton (ground) state exceeds the polarization of the exciton reservoir for equal magnetic field magnitudes by approximately 50%, as a consequence of enhanced relaxation of bosons in our monolayer-based system.
Two-dimensional transition metal dichalcogenide (TMD) semiconductors provide a unique possibility to access the electronic valley degree of freedom using polarized light, opening the way to valley information transfer between distant systems. Exciton s with a well-defined valley index (or valley pseudospin) as well as superpositions of the exciton valley states can be created with light having circular and linear polarization, respectively. However, the generated excitons have short lifetimes (ps) and are also subject to the electron-hole exchange interaction leading to fast relaxation of the valley pseudospin and coherence. Here we show that control of these processes can be gained by embedding a monolayer of WSe$_2$ in an optical microcavity, where part-light-part-matter exciton-polaritons are formed in the strong light-matter coupling regime. We demonstrate the optical initialization of the valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than that of the excitons. We further control the evolution of the polariton valley coherence using a Faraday magnetic field to rotate the valley pseudospin by an angle defined by the exciton-cavity-mode detuning, which exceeds the rotation angle in the bare exciton. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
While conventional semiconductor technology relies on the manipulation of electrical charge for the implementation of computational logic, additional degrees of freedom such as spin and valley offer alternative avenues for the encoding of information . In transition metal dichalcogenide (TMD) monolayers, where spin-valley locking is present, strong retention of valley chirality has been reported for MoS$_2$, WSe$_2$ and WS$_2$ while MoSe$_2$ shows anomalously low valley polarisation retention. In this work, chiral selectivity of MoSe$_2$ cavity polaritons under helical excitation is reported with a polarisation degree that can be controlled by the exciton-cavity detuning. In contrast to the very low circular polarisation degrees seen in MoSe$_2$ exciton and trion resonances, we observe a significant enhancement of up to 7 times when in the polaritonic regime. Here, polaritons introduce a fast decay mechanism which inhibits full valley pseudospin relaxation and thus allows for increased retention of injected polarisation in the emitted light. A dynamical model applicable to cavity-polaritons in any TMD semiconductor, reproduces the detuning dependence through the incorporation of the cavity-modified exciton relaxation, allowing an estimate of the spin relaxation time in MoSe$_2$ which is an order of magnitude faster than those reported in other TMDs. The valley addressable exciton-polaritons reported here offer robust valley polarised states demonstrating the prospect of valleytronic devices based upon TMDs embedded in photonic structures, with significant potential for valley-dependent nonlinear polariton-polariton interactions.
The newly discovered valley degree of freedom (DOF) in atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) offers a promising platform to explore rich nonlinear physics, such as spinor Bose-Einstein condensate (BEC) and novel valleytronics applications. However, the critical nonlinear effect, such as valley polariton bosonic stimulation (BS), has long remained an unresolved challenge due to the generation of limited polariton ground state densities necessary to induce the stimulated scattering of polaritons in specific valleys. Here, we report, for the first time, the valley bosonic stimulation of exciton-polaritons via spin-valley locking in a WS2 monolayer microcavity. This is achieved by the resonant injection of valley polaritons at specific energy and wavevector, which allows spin-polarized polaritons to efficiently populate their ground state and induce a valley-dependent bosonic stimulation. As a result, we observe the nonlinear self-amplification of polariton emission from the valley-dependent ground state. Our finding paves the way for both fundamental study of valley polariton BEC physics and non-linear optoelectronic devices such as spin-dependent parametric oscillators and spin-lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا