ﻻ يوجد ملخص باللغة العربية
Recent investigations have advanced the understanding of how structure-property relationships in ferromagnetic metal alloys affect the magnetization dynamics on nanosecond time-scales. A similar understanding for magnetization dynamics on femto- to pico-second time-scales does not yet exist. To address this, we perform time-resolved magneto optic Kerr effect (TRMOKE) measurements of magnetization dynamics in Co-Fe alloys on femto- to nano-second regimes. We show that Co-Fe compositions that exhibit low Gilbert damping parameters also feature prolonged ultrafast demagnetization upon photoexcitation. We analyze our experimental TR-MOKE data with the three-temperature-model (3TM) and the Landau-Lifshitz-Gilbert equation. These analyses reveal a strong compositional dependence of the dynamics across all time-scales on the strength of electron-phonon interactions. Our findings are beneficial to the spintronics and magnonics community, and will aid in the quest for energy-efficient magnetic storage applications.
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization.
The temperature evolution of GdFeCo electrons following optical heating plays a key role in all optical switching of GdFeCo and is primarily governed by the strength of coupling between electrons and phonons. Typically, the strength of electron-phono
We present a microscopic calculation of magnetization damping for a magnetic toy model. The magnetic system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and the magnetization damping is due
A hierarchical multiscale approach to model the magnetization dynamics of ferromagnetic ran- dom alloys is presented. First-principles calculations of the Heisenberg exchange integrals are linked to atomistic spin models based upon the stochastic Lan
In the past decade, the advent of time-resolved spectroscopic tools has provided a new ground to explore fundamental interactions in solids and to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Time-