ترغب بنشر مسار تعليمي؟ اضغط هنا

ScaleHLS: Scalable High-Level Synthesis through MLIR

133   0   0.0 ( 0 )
 نشر من قبل Hanchen Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High-level Synthesis (HLS) has been widely adopted as it significantly improves the hardware design productivity and enables efficient design space exploration (DSE). HLS tools can be used to deliver solutions for many different kinds of design problems, which are often better solved with different levels of abstraction. While existing HLS tools are built using compiler infrastructures largely based on a single-level abstraction (e.g., LLVM), we propose ScaleHLS, a next-generation HLS compilation flow, on top of a multi-level compiler infrastructure called MLIR, for the first time. By using an intermediate representation (IR) that can be better tuned to particular algorithms at different representation levels, we are able to build this new HLS tool that is more scalable and customizable towards various applications coming with intrinsic structural or functional hierarchies. ScaleHLS is able to represent and optimize HLS designs at multiple levels of abstraction and provides an HLS-dedicated transform and analysis library to solve the optimization problems at the suitable representation levels. On top of the library, we also build an automated DSE engine to explore the multi-dimensional design space efficiently. In addition, we develop an HLS C front-end and a C/C++ emission back-end to translate HLS designs into/from MLIR for enabling the end-to-end ScaleHLS flow. Experimental results show that, comparing to the baseline designs only optimized by Xilinx Vivado HLS, ScaleHLS improves the performances with amazing quality-of-results -- up to 768.1x better on computation kernel level programs and up to 3825.0x better on neural network models.



قيم البحث

اقرأ أيضاً

High-level synthesis (HLS) is a key component for the hardware acceleration of applications, especially thanks to the diffusion of reconfigurable devices in many domains, from data centers to edge devices. HLS reduces development times by allowing de signers to raise the abstraction level and use automated methods for hardware generation. Since security concerns are becoming more and more relevant for data-intensive applications, we investigate how to abstract security properties and use HLS for their integration with the accelerator functionality. We use the case of dynamic information flow tracking, showing how classic software-level abstractions can be efficiently used to hide implementation details to the designers.
Deep neural network models are becoming increasingly popular and have been used in various tasks such as computer vision, speech recognition, and natural language processing. Machine learning models are commonly trained in a resource-rich environment and then deployed in a distinct environment such as high availability machines or edge devices. To assist the portability of models, the open-source community has proposed the Open Neural Network Exchange (ONNX) standard. In this paper, we present a high-level, preliminary report on our onnx-mlir compiler, which generates code for the inference of deep neural network models described in the ONNX format. Onnx-mlir is an open-source compiler implemented using the Multi-Level Intermediate Representation (MLIR) infrastructure recently integrated in the LLVM project. Onnx-mlir relies on the MLIR concept of dialects to implement its functionality. We propose here two new dialects: (1) an ONNX specific dialect that encodes the ONNX standard semantics, and (2) a loop-based dialect to provide for a common lowering point for all ONNX dialect operations. Each intermediate representation facilitates its own characteristic set of graph-level and loop-based optimizations respectively. We illustrate our approach by following several models through the proposed representations and we include some early optimization work and performance results.
This work presents MLIR, a novel approach to building reusable and extensible compiler infrastructure. MLIR aims to address software fragmentation, improve compilation for heterogeneous hardware, significantly reduce the cost of building domain speci fic compilers, and aid in connecting existing compilers together. MLIR facilitates the design and implementation of code generators, translators and optimizers at different levels of abstraction and also across application domains, hardware targets and execution environments. The contribution of this work includes (1) discussion of MLIR as a research artifact, built for extension and evolution, and identifying the challenges and opportunities posed by this novel design point in design, semantics, optimization specification, system, and engineering. (2) evaluation of MLIR as a generalized infrastructure that reduces the cost of building compilers-describing diverse use-cases to show research and educational opportunities for future programming languages, compilers, execution environments, and computer architecture. The paper also presents the rationale for MLIR, its original design principles, structures and semantics.
We demonstrate that general-purpose memory allocation involving many threads on many cores can be done with high performance, multicore scalability, and low memory consumption. For this purpose, we have designed and implemented scalloc, a concurrent allocator that generally performs and scales in our experiments better than other allocators while using less memory, and is still competitive otherwise. The main ideas behind the design of scalloc are: uniform treatment of small and big objects through so-called virtual spans, efficiently and effectively reclaiming free memory through fast and scalable global data structures, and constant-time (modulo synchronization) allocation and deallocation operations that trade off memory reuse and spatial locality without being subject to false sharing.
This work targets the development of an efficient abstraction method for formal analysis and control synthesis of discrete-time stochastic hybrid systems (SHS) with linear dynamics. The focus is on temporal logic specifications, both over finite and infinite time horizons. The framework constructs a finite abstraction as a class of uncertain Markov models known as interval Markov decision process (IMDP). Then, a strategy that maximizes the satisfaction probability of the given specification is synthesized over the IMDP and mapped to the underlying SHS. In contrast to existing formal approaches, which are by and large limited to finite-time properties and rely on conservative over-approximations, we show that the exact abstraction error can be computed as a solution of convex optimization problems and can be embedded into the IMDP abstraction. This is later used in the synthesis step over both finite- and infinite-horizon specifications, mitigating the known state-space explosion problem. Our experimental validation of the new approach compared to existing abstraction-based approaches shows: (i) significant (orders of magnitude) reduction of the abstraction error; (ii) marked speed-ups; and (iii) boosted scalability, allowing in particular to verify models with more than 10 continuous variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا