ﻻ يوجد ملخص باللغة العربية
The energy and waiting time distributions are important properties to understand the physical mechanism of repeating fast radio bursts (FRBs). Recently, Five-hundred-meter Aperture Spherical radio Telescope (FAST) detected the largest sample of FRB 121102, containing 1652 bursts. The energy distribution at high-energy range ($>10^{38}$ erg) can be fitted with a single power-law function with an index of $-1.86$. However, the distribution at low-energy range deviates from the power-law function. The energy distributions of high-energy bursts at different epochs are inconsistent. We find the power-law index of $-1.70$ for early bursts and $-2.60$ for later bursts. For bursts observed in a single day, a linear repetition pattern is found. We use the Weibull function to fit the waiting time distribution. The shape parameter $k = 0.72^{+0.01}_{-0.02}$ and the event rate $r = 734.47^{+29.04}_{-27.58}$ day$ ^{-1} $ are derived. If the waiting times with $delta_t < 28$ s are excluded, the burst behavior can be described by a Poisson process. The best-fitting values of $k$ are slightly different for low-energy and high-energy bursts. The event rates change significantly across the observing time, while the shape parameters $k$ vary slightly in different days.
Detections from the repeating fast radio burst FRB 121102 are clustered in time, noticeable even in the earliest repeat bursts. Recently, it was argued that the source activity is periodic, suggesting that the clustering reflected a not-yet-identifie
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission exte
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal c
We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at
The spectra of fast radio bursts (FRBs) encode valuable information about the sources local environment, underlying emission mechanism(s), and the intervening media along the line of sight. We present results from a long-term multiwavelength radio mo