We theoretically study magnon-phonon hybrid excitations (magnon-polarons) in two-dimensional antiferromagnets on a honeycomb lattice. With an in-plane Dzyaloshinskii-Moriya interaction (DMI) allowed from mirror symmetry breaking from phonons, we find non-trivial Berry curvature around the anti-crossing rings among magnon and both optical and acoustic phonon bands, which gives rise to finite Chern numbers. We show that the Chern numbers of the magnon-polaron bands can be manipulated by changing the magnetic field direction or strength. We evaluate the thermal Hall conductivity reflecting the non-trivial Berry curvatures of magnon-polarons and propose a valley Hall effect resulting from spin-induced chiral phonons as a possible experimental signature. Our study complements prior work on magnon-phonon hybridized systems without optical phonons and suggests possible applications in spin caloritronics with topological magnons and chiral phonons.