ﻻ يوجد ملخص باللغة العربية
The solar gravitational lens (SGL) provides a factor of $10^{11}$ amplification for viewing distant point sources beyond our solar system. As such, it may be used for resolved imaging of extended sources, such as exoplanets, not possible otherwise. To use the SGL, a spacecraft carrying a modest telescope and a coronagraph must reach the SGLs focal region, that begins at $sim$550 astronomical units (AU) from the Sun and is oriented outward along the line connecting the distant object and the Sun. No spacecraft has ever reached even a half of that distance; and to do so within a reasonable mission lifetime (e.g., less than 25 years) and affordable cost requires a new type of mission design, using solar sails and microsats ($<100$~kg). The payoff is high -- using the SGL is the only practical way we can ever get a high-resolution, multi-pixel image of an Earth-like exoplanet, one that we identify as potentially habitable. This paper describes a novel mission design starting with a rideshare launch from the Earth, spiraling in toward the Sun, and then flying around it to achieve solar system exit speeds of over $20$ AU/year. A new sailcraft design is used to make possible high area to mass ratio for the sailcraft. The mission design enables other fast solar system missions, starting with a proposed very low cost technology demonstration mission (TDM) to prove the functionality and operation of the microsat-solar sail design and then, building on the TDM, missions to explore distant regions of the solar system, and those to study Kuiper Belt objects (KBOs) and the recently discovered interstellar objects (ISOs) are also possible.
We examined the solar gravitational lens (SGL) as the means to produce direct high-resolution, multipixel images of exoplanets. The properties of the SGL are remarkable: it offers maximum light amplification of ~1e11 and angular resolution of ~1e-10
The Solar Gravitational Lens (SGL) allows for major brightness amplification ($sim 10^{11}$ at wavelength of $1~mu$m) and extreme angular resolution ($sim10^{-10}$ arcsec) within a narrow field of view. A meter-class telescope, with a modest coronagr
The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, includ
Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral character