ﻻ يوجد ملخص باللغة العربية
We present the orbital solution of a peculiar double-lined spectroscopic and eclipsing binary system, 2M17091769+3127589. This solution was obtained by a simultaneous fit of both APOGEE radial velocities and TESS and ASAS-SN light curves to determine masses and radii. This system consists of an $M=0.256^{+0.010}_{-0.006}$ $M_odot$, $R=3.961^{+0.049}_{-0.032}$ $R_{odot}$ red giant and a hotter $M=1.518 ^{+0.057}_{-0.031}$ $M_odot$, $R=2.608^{+0.034}_{-0.321}$ $R_{odot}$ subgiant. Modelling with the MESA evolutionary codes indicates that the system likely formed 5.26 Gyrs ago, with a $M=1.2$ $M_odot$ primary that is now the systems red giant and a $M=1.11$ $M_odot$ secondary that is now a more massive subgiant. Due to Roche-lobe overflow as the primary ascends the red giant branch, the more evolved primary (i.e., originally the more massive star of the pair) is now only one-sixth as massive as the secondary. Such a difference between the initial and the current mass ratio is one of the most extreme detected so far. Evolutionary modelling suggests the system is still engaged in mass transfer, at a rate of $dot{M} sim 10^{-9}$ $M_odot$ yr$^{-1}$, and it provides an example of a less evolved precursor to some of the systems that consist of white dwarfs and blue stragglers.
Binary stars play a vital role in astrophysical research, as a good fraction of stars are in binaries. Binary fraction (BF) is known to change with stellar mass in the Galactic field, but such studies in clusters require binary identification and mem
Radio timing observations of a millisecond pulsar in orbit around the Galactic centre black hole (BH) or a BH at the centre of globular clusters could answer foundational questions in astrophysics and fundamental physics. Pulsar radio astronomy typic
There is a striking and unexplained dearth of brown dwarf companions in close orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, the
The Laser Interferometer Space Antenna (LISA) will open the mHz frequency window of the gravitational wave (GW) landscape. Among all the new GW sources expected to emit in this frequency band, extreme mass-ratio inspirals (EMRIs) constitute a unique
We show that the loudest extreme mass-ratio inspirals (EMRIs) detected by the future space-based gravitational wave detector LISA can be used as dark standard sirens, statistically matching their sky localisation region with mock galaxy catalogs. In