Anomalous magnetic noise in imperfect flat bands in the topological magnet Dy2Ti2O7


الملخص بالإنكليزية

The spin ice compound Dy_2Ti_2O_7 stands out as the first topological magnet in three dimensions, with its tell-tale emergent fractionalized magnetic monopole excitations. Its real-time dynamical properties have been an enigma from the very beginning. Using ultrasensitive, non-invasive SQUID measurements, we show that Dy_2Ti_2O_7 exhibits a highly anomalous noise spectrum, in three qualitatively different regimes: equilibrium spin ice, a `frozen regime extending to ultra-low temperatures, as well as a high-temperature `anomalous paramagnet. We show that in the simplest model of spin ice, the dynamics is not anomalous, and we present several distinct mechanisms which give rise to a coloured noise spectrum. In addition, we identify the structure of the single-ion dynamics as a crucial ingredient for any modelling. Thus, the dynamics of spin ice Dy_2Ti_2O_7 reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such should be relevant for a broad class of magnetic materials.

تحميل البحث