ﻻ يوجد ملخص باللغة العربية
HD 144941 is an extreme He (EHe) star, a rare class of subdwarf OB star formed from the merger of two white dwarf (WD) stars. Uniquely amongst EHe stars, its light curve has been reported to be modulated entirely by rotation, suggesting the presence of a magnetic field. Here we report the first high-resolution spectropolarimetric observations of HD 144941, in which we detect an extremely strong magnetic field both in circular polarization (with a line-of-sight magnetic field averaged over the stellar disk $langle B_z rangle sim -8$ kG) and in Zeeman splitting of spectral lines (yielding a magnetic modulus of $langle B rangle sim 17$ kG). We also report for the first time weak H$alpha$ emission consistent with an origin an a Centrifugal Magnetosphere (CM). HD 144941s atmospheric parameters could be consistent with either a subdwarf or a main sequence (MS) star, and its surface abundances are neither similar to other EHe stars nor to He-strong magnetic stars. However, its H$alpha$ emission properties can only be reproduced if its mass is around 1 M$_odot$, indicating that it must be a post-MS object. Since there is no indication of binarity, it is unlikely to be a stripped star, and was therefore most likely produced in a WD merger. HD 144941 is therefore further evidence that mergers are a viable pathway for the generation of fossil magnetic fields.
We present the results of a study of the star HD 34736. The spectropolarimetric observations carried out at the 6-m telescope showed the presence of a strong variable longitudinal magnetic field, exceeding -4500 G. The analysis of the HIPPARCOS photo
We present an analysis and re-appraisal of the massive, carbon-enriched (DQ) white dwarf (WD) LP 93-21. Its high mass (~1 M_sun) and membership to the class of warm DQ WDs, combined with its peculiar halo kinematics suggest that this object is the pr
Abridged: We report the discovery of two, new, rare, wide, double-degenerate binaries that each contain a magnetic and a non-magnetic star. The components of SDSSJ092646.88+132134.5 + J092647.00+132138.4 and SDSSJ150746.48+521002.1 + J150746.80+52095
Characterizing the local space density of double degenerate binary systems is a complementary approach to broad sky surveys of double degenerates to determine the expected rates of white dwarf binary mergers, in particular those that may evolve into
Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose association