ﻻ يوجد ملخص باللغة العربية
A counter-intuitive disappearance of the giant terahertz photoconductance of a quantum point contact (QPC) under increase in the photon energy, which was discovered experimentally (Otteneder et al., Phys. Rev. Applied 10 (2018) 014015) and studied by the numerical calculations of the photon-stimulated transport (O.A. Tkachenko et al., JETP Lett. 108 (2018) 396), is explained here by using qualitative considerations about the momentum conservation upon absorption of terahertz photons. The spectra of photon-stimulated transmission through a smooth one-dimensional barrier are calculated on the basis of the perturbation theory. These calculations also predict the spectral maxima for optical transitions from the Fermi level to the top of the potential barrier. Within the proposed physical picture, the widths of the spectral maxima are estimated, and the evolution of the shape of the spectra with a change in the position of the Fermi level is qualitatively explained.
We report on the observation of the giant photoconductance of a quantum point contact (QPC) in tunneling regime excited by terahertz radiation. Studied QPCs are formed in a GaAs/AlGaAs heterostructure with a high-electron-mobility two-dimensional ele
We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigat
A highly superlinear in radiation intensity photoconductance induced by terahertz laser radiation with moderate intensities has been observed in quantum point contacts made of GaAs quantum wells operating in the deep tunneling regime. For very low va
We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or
The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already reve