ترغب بنشر مسار تعليمي؟ اضغط هنا

AD-GAN: End-to-end Unsupervised Nuclei Segmentation with Aligned Disentangling Training

83   0   0.0 ( 0 )
 نشر من قبل Kai Yao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider unsupervised cell nuclei segmentation in this paper. Exploiting the recently-proposed unpaired image-to-image translation between cell nuclei images and randomly synthetic masks, existing approaches, e.g., CycleGAN, have achieved encouraging results. However, these methods usually take a two-stage pipeline and fail to learn end-to-end in cell nuclei images. More seriously, they could lead to the lossy transformation problem, i.e., the content inconsistency between the original images and the corresponding segmentation output. To address these limitations, we propose a novel end-to-end unsupervised framework called Aligned Disentangling Generative Adversarial Network (AD-GAN). Distinctively, AD-GAN introduces representation disentanglement to separate content representation (the underling spatial structure) from style representation (the rendering of the structure). With this framework, spatial structure can be preserved explicitly, enabling a significant reduction of macro-level lossy transformation. We also propose a novel training algorithm able to align the disentangled content in the latent space to reduce micro-level lossy transformation. Evaluations on real-world 2D and 3D datasets show that AD-GAN substantially outperforms the other comparison methods and the professional software both quantitatively and qualitatively. Specifically, the proposed AD-GAN leads to significant improvement over the current best unsupervised methods by an average 17.8% relatively (w.r.t. the metric DICE) on four cell nuclei datasets. As an unsupervised method, AD-GAN even performs competitive with the best supervised models, taking a further leap towards end-to-end unsupervised nuclei segmentation.



قيم البحث

اقرأ أيضاً

One of the core components of conventional (i.e., non-learned) video codecs consists of predicting a frame from a previously-decoded frame, by leveraging temporal correlations. In this paper, we propose an end-to-end learned system for compressing vi deo frames. Instead of relying on pixel-space motion (as with optical flow), our system learns deep embeddings of frames and encodes their difference in latent space. At decoder-side, an attention mechanism is designed to attend to the latent space of frames to decide how different parts of the previous and current frame are combined to form the final predicted current frame. Spatially-varying channel allocation is achieved by using importance masks acting on the feature-channels. The model is trained to reduce the bitrate by minimizing a loss on importance maps and a loss on the probability output by a context model for arithmetic coding. In our experiments, we show that the proposed system achieves high compression rates and high objective visual quality as measured by MS-SSIM and PSNR. Furthermore, we provide ablation studies where we highlight the contribution of different components.
We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatia l support for appearance measurements, but typically operate in two separate stages, none of which targets pixel labeling performance at the end of the pipeline. More recent fully convolutional methods are capable of end-to-end training for the final pixel labeling, but resort to fixed patches as spatial support. We show how to modify modern region-based approaches to enable end-to-end training for semantic segmentation. This is achieved via a differentiable region-to-pixel layer and a differentiable free-form Region-of-Interest pooling layer. Our method improves the state-of-the-art in terms of class-average accuracy with 64.0% on SIFT Flow and 49.9% on PASCAL Context, and is particularly accurate at object boundaries.
Automatic instance segmentation of glomeruli within kidney Whole Slide Imaging (WSI) is essential for clinical research in renal pathology. In computer vision, the end-to-end instance segmentation methods (e.g., Mask-RCNN) have shown their advantages relative to detect-then-segment approaches by performing complementary detection and segmentation tasks simultaneously. As a result, the end-to-end Mask-RCNN approach has been the de facto standard method in recent glomerular segmentation studies, where downsampling and patch-based techniques are used to properly evaluate the high resolution images from WSI (e.g., >10,000x10,000 pixels on 40x). However, in high resolution WSI, a single glomerulus itself can be more than 1,000x1,000 pixels in original resolution which yields significant information loss when the corresponding features maps are downsampled via the Mask-RCNN pipeline. In this paper, we assess if the end-to-end instance segmentation framework is optimal for high-resolution WSI objects by comparing Mask-RCNN with our proposed detect-then-segment framework. Beyond such a comparison, we also comprehensively evaluate the performance of our detect-then-segment pipeline through: 1) two of the most prevalent segmentation backbones (U-Net and DeepLab_v3); 2) six different image resolutions (from 512x512 to 28x28); and 3) two different color spaces (RGB and LAB). Our detect-then-segment pipeline, with the DeepLab_v3 segmentation framework operating on previously detected glomeruli of 512x512 resolution, achieved a 0.953 dice similarity coefficient (DSC), compared with a 0.902 DSC from the end-to-end Mask-RCNN pipeline. Further, we found that neither RGB nor LAB color spaces yield better performance when compared against each other in the context of a detect-then-segment framework. Detect-then-segment pipeline achieved better segmentation performance compared with End-to-end method.
Prostate cancer is the most prevalent cancer among men in Western countries, with 1.1 million new diagnoses every year. The gold standard for the diagnosis of prostate cancer is a pathologists evaluation of prostate tissue. To potentially assist pa thologists deep-learning-based cancer detection systems have been developed. Many of the state-of-the-art models are patch-based convolutional neural networks, as the use of entire scanned slides is hampered by memory limitations on accelerator cards. Patch-based systems typically require detailed, pixel-level annotations for effective training. However, such annotations are seldom readily available, in contrast to the clinical reports of pathologists, which contain slide-level labels. As such, developing algorithms which do not require manual pixel-wise annotations, but can learn using only the clinical report would be a significant advancement for the field. In this paper, we propose to use a streaming implementation of convolutional layers, to train a modern CNN (ResNet-34) with 21 million parameters end-to-end on 4712 prostate biopsies. The method enables the use of entire biopsy images at high-resolution directly by reducing the GPU memory requirements by 2.4 TB. We show that modern CNNs, trained using our streaming approach, can extract meaningful features from high-resolution images without additional heuristics, reaching similar performance as state-of-the-art patch-based and multiple-instance learning methods. By circumventing the need for manual annotations, this approach can function as a blueprint for other tasks in histopathological diagnosis. The source code to reproduce the streaming models is available at https://github.com/DIAGNijmegen/pathology-streaming-pipeline .
Reconstructing RGB image from RAW data obtained with a mobile device is related to a number of image signal processing (ISP) tasks, such as demosaicing, denoising, etc. Deep neural networks have shown promising results over hand-crafted ISP algorithm s on solving these tasks separately, or even replacing the whole reconstruction process with one model. Here, we propose PyNET-CA, an end-to-end mobile ISP deep learning algorithm for RAW to RGB reconstruction. The model enhances PyNET, a recently proposed state-of-the-art model for mobile ISP, and improve its performance with channel attention and subpixel reconstruction module. We demonstrate the performance of the proposed method with comparative experiments and results from the AIM 2020 learned smartphone ISP challenge. The source code of our implementation is available at https://github.com/egyptdj/skyb-aim2020-public

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا