ﻻ يوجد ملخص باللغة العربية
We use results of shallow-water magnetohydrodynamics (SWMHD) to place estimates on the minimum magnetic field strengths required to cause atmospheric wind variations (and therefore westward venturing hotspots) for a dataset of hot Jupiters (HJs), including HAT-P-7b, CoRoT-2b, Kepler-76, WASP-12b, and WASP-33b, on which westward hotspots have been observationally inferred. For HAT-P-7b and CoRoT-2b our estimates agree with past results; for Kepler-76b we find that the critical dipolar magnetic field strength, over which the observed wind variations can be explained by magnetism, lies between $4mbox{ G}$ and $19mbox{ G}$; for WASP-12b and WASP-33b westward hotspots can be explained by $1mbox{ G}$ and $2mbox{ G}$ dipolar fields respectively. Additionally, to guide future observational missions, we identify $61$ further HJs that are likely to exhibit magnetically-driven atmospheric wind variations and predict these variations are highly-likely in $sim 40$ of the hottest HJs.
Westward winds have now been inferred for two hot Jupiters (HJs): HAT-P-7b and CoRoT-2b. Such observations could be the result of a number of physical phenomena such as cloud asymmetries, asynchronous rotation, or magnetic fields. For the hotter HJs
The influence of a toroidal magnetic field on the dynamics of Rossby waves in a thin layer of ideal conductive fluid on a rotating sphere is studied in the shallow water magnetohydrodynamic approximation for the first time. Dispersion relations for m
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special
The observed low densities of gas giant planets with a high equilibrium temperature can be simulated in models when a fraction of the surface radiation is deposited deeper in the interior. Meanwhile migration theories suggest that hot Jupiters formed
Thermal dissociation and recombination of molecular hydrogen, H_2, in the atmospheres of ultra-hot Jupiters (UHJs) has been shown to play an important role in global heat redistribution. This, in turn, significantly impacts their planetary emission,