Raman scattering of plane-wave and twisted light off chiral molecular liquids


الملخص بالإنكليزية

We present an experimental study of the quasi-elastic Raman scattering (QES) of plane-wave and twisted light by liquid crystals. Depending on their temperature, these crystals can exhibit isotropic, nematic and chiral nematic phases. The question is addressed of how the phase of a crystal and the state of incident light can affect the quasi-elastic energy spectra of the scattered radiation, whose shape is usually described by the combination of Lorentzian and Gaussian components. Special attention is paid to the textit{chiral phase}, for which the Raman QES spectrum is dominated by a Lorentzian with reduced linewidth, pointing to diminished disorder and configurational entropy. Moreover, this phase is also known for a regime of iridescence (selective backscattering) which arises when the wavelength of incident light becomes comparable with the chiral pitch length. Detailed measurements, performed in this textit{resonant} regime and by employing twisted light, carrying various projections of the orbital angular momentum (OAM), have indicated a low-energy scattering surplus depending on OAM. We argue that this observation might indicate a transfer of angular momentum between light and the liquid crystal.

تحميل البحث