ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Query Optimization using a Hybrid Approach of Classical and Quantum Computing

118   0   0.0 ( 0 )
 نشر من قبل Marc E. Sol\\`er
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computing promises to solve difficult optimization problems in chemistry, physics and mathematics more efficiently than classical computers, but requires fault-tolerant quantum computers with millions of qubits. To overcome errors introduced by todays quantum computers, hybrid algorithms combining classical and quantum computers are used. In this paper we tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems. We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer. We perform a detailed experimental evaluation of our algorithm and compare its performance against a competing approach that employs a quantum annealer -- another type of quantum computer. Our experimental results demonstrate that our algorithm currently can only handle small problem sizes due to the limited number of qubits available on a gate-based quantum computer compared to a quantum computer based on quantum annealing. However, our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation. Finally, we analyze how our algorithm scales with larger problem sizes and conclude that our approach shows promising results for near-term quantum computers.



قيم البحث

اقرأ أيضاً

The numerical solution of partial differential equations by discretization techniques is ubiquitous in computational physics. In this work we benchmark this approach in the quantum realm by solving the heat equation for a square plate subject to fixe d temperatures at the edges and random heat sources and sinks within the domain. The hybrid classical-quantum approach consists in the solution on a quantum computer of the coupled linear system of equations that result from the discretization step. Owing to the limitations in the number of qubits and their connectivity, we use the Gauss-Seidel method to divide the full system of linear equations into subsystems, which are solved iteratively in block fashion. Each of the linear subsystems were solved using 2000Q and Advantage quantum computers developed by D-Wave Systems Inc. By comparing classical numerical and quantum solutions, we observe that the errors and chain break fraction are, on average, greater on the 2000Q system. Unlike the classical Gauss-Seidel method, the errors of the quantum solutions level off after a few iterations of our algorithm. This is partly a result of the span of the real number line available from the mapping of the chosen size of the set of qubit states. We verified this by using techniques to progressively shrink the range mapped by the set of qubit states at each iteration (increasing floating-point accuracy). As a result, no leveling off is observed. However, an increase in qubits does not translate to an overall lower error. This is believed to be indicative of the increasing length of chains required for the mapping to real numbers and the ensuing limitations of hardware.
Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs.
Knowledge graphs (KG) that model the relationships between entities as labeled edges (or facts) in a graph are mostly constructed using a suite of automated extractors, thereby inherently leading to uncertainty in the extracted facts. Modeling the un certainty as probabilistic confidence scores results in a probabilistic knowledge graph. Graph queries over such probabilistic KGs require answer computation along with the computation of those result probabilities, aka, probabilistic inference. We propose a system, HAPPI (How Provenance of Probabilistic Inference), to handle such query processing. Complying with the standard provenance semiring model, we propose a novel commutative semiring to symbolically compute the probability of the result of a query. These provenance-polynomiallike symbolic expressions encode fine-grained information about the probability computation process. We leverage this encoding to efficiently compute as well as maintain the probability of results as the underlying KG changes. Focusing on a popular class of conjunctive basic graph pattern queries on the KG, we compare the performance of HAPPI against a possible-world model of computation and a knowledge compilation tool over two large datasets. We also propose an adaptive system that leverages the strengths of both HAPPI and compilation based techniques. Since existing systems for probabilistic databases mostly focus on query computation, they default to re-computation when facts in the KG are updated. HAPPI, on the other hand, does not just perform probabilistic inference and maintain their provenance, but also provides a mechanism to incrementally maintain them as the KG changes. We extend this maintainability as part of our proposed adaptive system.
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semi-classical semiconductor tran sport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: It enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non-)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
189 - Rajesh Kumar Tiwari 2013
In the current world of economic crises, the cost control is one of the chief concerns for all types of industries, especially for the small venders. The small vendors are suppose to minimize their budget on Information Technology by reducing the ini tial investment in hardware and costly database servers like ORACLE, SQL Server, SYBASE, etc. for the purpose of data processing and storing. In other divisions, the electronic devices manufacturing companies want to increase the demand and reduce the manufacturing cost by introducing the low cost technologies. The new small devices like ipods, iphones, palm top etc. are now-a-days used as data computation and storing tools. For both the cases mentioned above, instead of going for the costly database servers which additionally requires extra hardware as well as the extra expenses in training and handling, the flat file may be considered as a candidate due to its easy handling nature, fast accessing, and of course free of cost. But the main hurdle is the security aspects which are not up to the optimum level. In this paper, we propose a methodology that combines all the merit of the flat file and with the help of a novel steganographic technique we can maintain the utmost security fence. The new proposed methodology will undoubtedly be highly beneficial for small vendors as well as for the above said electronic devices manufacturer

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا