ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of a Graphical User Interface for Few-Shot Machine Learning Classification of Electron Microscopy Data

109   0   0.0 ( 0 )
 نشر من قبل Steven Spurgeon
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent growth in data volumes produced by modern electron microscopes requires rapid, scalable, and flexible approaches to image segmentation and analysis. Few-shot machine learning, which can richly classify images from a handful of user-provided examples, is a promising route to high-throughput analysis. However, current command-line implementations of such approaches can be slow and unintuitive to use, lacking the real-time feedback necessary to perform effective classification. Here we report on the development of a Python-based graphical user interface that enables end users to easily conduct and visualize the output of few-shot learning models. This interface is lightweight and can be hosted locally or on the web, providing the opportunity to reproducibly conduct, share, and crowd-source few-shot analyses.



قيم البحث

اقرأ أيضاً

Few-shot learning aims to transfer information from one task to enable generalization on novel tasks given a few examples. This information is present both in the domain and the class labels. In this work we investigate the complementary roles of the se two sources of information by combining instance-discriminative contrastive learning and supervised learning in a single framework called Supervised Momentum Contrastive learning (SUPMOCO). Our approach avoids a problem observed in supervised learning where information in images not relevant to the task is discarded, which hampers their generalization to novel tasks. We show that (self-supervised) contrastive learning and supervised learning are mutually beneficial, leading to a new state-of-the-art on the META-DATASET - a recently introduced benchmark for few-shot learning. Our method is based on a simple modification of MOCO and scales better than prior work on combining supervised and self-supervised learning. This allows us to easily combine data from multiple domains leading to further improvements.
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic device applications but also for the exploration of fundamental physical prope rties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for the further study. Traditional exploration of the optimal synthesis conditions of novel materials is based on the trial-and-error approach, which is time consuming, costly and laborious. Recently, machine learning (ML) has demonstrated promising capability in guiding material synthesis through effectively learning from the past data and then making recommendations. Here, we report the implementation of supervised ML for the chemical vapor deposition (CVD) synthesis of high-quality 1D few-layered WTe2 nanoribbons (NRs). The synthesis parameters of the WTe2 NRs are optimized by the trained ML model. On top of that, the growth mechanism of as-synthesized 1T few-layered WTe2 NRs is further proposed, which may inspire the growth strategies for other 1D nanostructures. Our findings suggest that ML is a powerful and efficient approach to aid the synthesis of 1D nanostructures, opening up new opportunities for intelligent material development.
Few-shot image classification is a challenging problem which aims to achieve the human level of recognition based only on a small number of images. Deep learning algorithms such as meta-learning, transfer learning, and metric learning have been emplo yed recently and achieved the state-of-the-art performance. In this survey, we review representative deep metric learning methods for few-shot classification, and categorize them into three groups according to the major problems and novelties they focus on. We conclude this review with a discussion on current challenges and future trends in few-shot image classification.
We introduce a graphical user interface for constructing arbitrary tensor networks and specifying common operations like contractions or splitting, denoted GuiTeNet. Tensors are represented as nodes with attached legs, corresponding to the ordered di mensions of the tensor. GuiTeNet visualizes the current network, and instantly generates Python/NumPy source code for the hitherto sequence of user actions. Support for additional programming languages is planned for the future. We discuss the elementary operations on tensor networks used by GuiTeNet, together with high-level optimization strategies. The software runs directly in web browsers and is available online at http://guitenet.org.
The large-scale search for high-performing candidate 2D materials is limited to calculating a few simple descriptors, usually with first-principles density functional theory calculations. In this work, we alleviate this issue by extending and general izing crystal graph convolutional neural networks to systems with planar periodicity, and train an ensemble of models to predict thermodynamic, mechanical, and electronic properties. To demonstrate the utility of this approach, we carry out a screening of nearly 45,000 structures for two largely disjoint applications: namely, mechanically robust composites and photovoltaics. An analysis of the uncertainty associated with our methods indicates the ensemble of neural networks is well-calibrated and has errors comparable with those from accurate first-principles density functional theory calculations. The ensemble of models allows us to gauge the confidence of our predictions, and to find the candidates most likely to exhibit effective performance in their applications. Since the datasets used in our screening were combinatorically generated, we are also able to investigate, using an innovative method, structural and compositional design principles that impact the properties of the structures surveyed and which can act as a generative model basis for future material discovery through reverse engineering. Our approach allowed us to recover some well-accepted design principles: for instance, we find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا