ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Operation of Power Systems with Energy Storage under Uncertainty: A Scenario-based Method with Strategic Sampling

59   0   0.0 ( 0 )
 نشر من قبل Ren Hu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The multi-period dynamics of energy storage (ES), intermittent renewable generation and uncontrollable power loads, make the optimization of power system operation (PSO) challenging. A multi-period optimal PSO under uncertainty is formulated using the chance-constrained optimization (CCO) modeling paradigm, where the constraints include the nonlinear energy storage and AC power flow models. Based on the emerging scenario optimization method which does not rely on pre-known probability distribution functions, this paper develops a novel solution method for this challenging CCO problem. The proposed meth-od is computationally effective for mainly two reasons. First, the original AC power flow constraints are approximated by a set of learning-assisted quadratic convex inequalities based on a generalized least absolute shrinkage and selection operator. Second, considering the physical patterns of data and motived by learning-based sampling, the strategic sampling method is developed to significantly reduce the required number of scenarios through different sampling strategies. The simulation results on IEEE standard systems indicate that 1) the proposed strategic sampling significantly improves the computational efficiency of the scenario-based approach for solving the chance-constrained optimal PSO problem, 2) the data-driven convex approximation of power flow can be promising alternatives of nonlinear and nonconvex AC power flow.



قيم البحث

اقرأ أيضاً

Power suppliers can exercise market power to gain higher profit. However, this becomes difficult when external information is extremely rare. To get a promising performance in an extremely incomplete information market environment, a novel model-free reinforcement learning algorithm based on the Learning Automata (LA) is proposed in this paper. Besides, this paper analyses the rationality and convergence of the algorithm in case studies based on the Cournot market model.
100 - Zhe Xu , Yichen Zhang 2021
In this paper, we present a provably correct controller synthesis approach for switched stochastic control systems with metric temporal logic (MTL) specifications with provable probabilistic guarantees. We first present the stochastic control bisimul ation function for switched stochastic control systems, which bounds the trajectory divergence between the switched stochastic control system and its nominal deterministic control system in a probabilistic fashion. We then develop a method to compute optimal control inputs by solving an optimization problem for the nominal trajectory of the deterministic control system with robustness against initial state variations and stochastic uncertainties. We implement our robust stochastic controller synthesis approach on both a four-bus power system and a nine-bus power system under generation loss disturbances, with MTL specifications expressing requirements for the grid frequency deviations, wind turbine generator rotor speed variations and the power flow constraints at different power lines.
We revisit the Thompson sampling algorithm to control an unknown linear quadratic (LQ) system recently proposed by Ouyang et al (arXiv:1709.04047). The regret bound of the algorithm was derived under a technical assumption on the induced norm of the closed loop system. In this technical note, we show that by making a minor modification in the algorithm (in particular, ensuring that an episode does not end too soon), this technical assumption on the induced norm can be replaced by a milder assumption in terms of the spectral radius of the closed loop system. The modified algorithm has the same Bayesian regret of $tilde{mathcal{O}}(sqrt{T})$, where $T$ is the time-horizon and the $tilde{mathcal{O}}(cdot)$ notation hides logarithmic terms in~$T$.
In this paper, we present a controller synthesis approach for wind turbine generators (WTG) and energy storage systems with metric temporal logic (MTL) specifications, with provable probabilistic guarantees in the stochastic environment of wind power generation. The MTL specifications are requirements for the grid frequency deviations, WTG rotor speed variations and the power flow constraints at different lines. We present the stochastic control bisimulation function, which bounds the divergence of the trajectories of a switched stochastic control system and the switched nominal control system in a probabilistic fashion.We first design a feedforward controller by solving an optimization problem for the nominal trajectory of the deterministic control system with robustness against initial state variations and stochastic uncertainties. Then we generate a feedback control law from the data of the simulated trajectories. We implement our control method on both a four-bus system and a nine-bus system, and test the effectiveness of the method with a generation loss disturbance. We also test the advantage of the feedback controller over the feedforward controller when unexpected disturbance occurs.
In this paper, we show how a dynamic population game can model the strategic interaction and migration decisions made by a large population of agents in response to epidemic prevalence. Specifically, we consider a modified susceptible-asymptomatic-in fected-recovered (SAIR) epidemic model over multiple zones. Agents choose whether to activate (i.e., interact with others), how many other agents to interact with, and which zone to move to in a time-scale which is comparable with the epidemic evolution. We define and analyze the notion of equilibrium in this game, and investigate the transient behavior of the epidemic spread in a range of numerical case studies, providing insights on the effects of the agents degree of future awareness, strategic migration decisions, as well as different levels of lockdown and other interventions. One of our key findings is that the strategic behavior of agents plays an important role in the progression of the epidemic and can be exploited in order to design suitable epidemic control measures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا