ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Sound Generation Using Neural Discrete Time-Frequency Representation Learning

80   0   0.0 ( 0 )
 نشر من قبل Xubo Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep generative models have recently achieved impressive performance in speech and music synthesis. However, compared to the generation of those domain-specific sounds, generating general sounds (such as siren, gunshots) has received less attention, despite their wide applications. In previous work, the SampleRNN method was considered for sound generation in the time domain. However, SampleRNN is potentially limited in capturing long-range dependencies within sounds as it only back-propagates through a limited number of samples. In this work, we propose a method for generating sounds via neural discrete time-frequency representation learning, conditioned on sound classes. This offers an advantage in efficiently modelling long-range dependencies and retaining local fine-grained structures within sound clips. We evaluate our approach on the UrbanSound8K dataset, compared to SampleRNN, with the performance metrics measuring the quality and diversity of generated sounds. Experimental results show that our method offers comparable performance in quality and significantly better performance in diversity.



قيم البحث

اقرأ أيضاً

Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
Speech encodes a wealth of information related to human behavior and has been used in a variety of automated behavior recognition tasks. However, extracting behavioral information from speech remains challenging including due to inadequate training d ata resources stemming from the often low occurrence frequencies of specific behavioral patterns. Moreover, supervised behavioral modeling typically relies on domain-specific construct definitions and corresponding manually-annotated data, rendering generalizing across domains challenging. In this paper, we exploit the stationary properties of human behavior within an interaction and present a representation learning method to capture behavioral information from speech in an unsupervised way. We hypothesize that nearby segments of speech share the same behavioral context and hence map onto similar underlying behavioral representations. We present an encoder-decoder based Deep Contextualized Network (DCN) as well as a Triplet-Enhanced DCN (TE-DCN) framework to capture the behavioral context and derive a manifold representation, where speech frames with similar behaviors are closer while frames of different behaviors maintain larger distances. The models are trained on movie audio data and validated on diverse domains including on a couples therapy corpus and other publicly collected data (e.g., stand-up comedy). With encouraging results, our proposed framework shows the feasibility of unsupervised learning within cross-domain behavioral modeling.
In this paper, we investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network. Averaged over variou s experiments on three benchmarking environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures such as GoogLeNet and AlexNet both in terms of classification accuracy and the number of training parameters. Therefore we set this model as our front-end classifier for subsequent investigations. Herein, we measure the impact of different settings required for generating more informative mel-frequency cepstral coefficient (MFCC), short-time Fourier transform (STFT), and discrete wavelet transform (DWT) representations on our front-end model. This measurement involves comparing the classification performance over the adversarial robustness. On the balance of average budgets allocated by adversary and the cost of attack, we demonstrate an inverse relationship between recognition accuracy and model robustness against six attack algorithms. Moreover, our experimental results show that while the ResNet-18 model trained on DWT spectrograms achieves the highest recognition accuracy, attacking this model is relatively more costly for the adversary compared to other 2D representations.
In this study, we propose the global context guided channel and time-frequency transformations to model the long-range, non-local time-frequency dependencies and channel variances in speaker representations. We use the global context information to e nhance important channels and recalibrate salient time-frequency locations by computing the similarity between the global context and local features. The proposed modules, together with a popular ResNet based model, are evaluated on the VoxCeleb1 dataset, which is a large scale speaker verification corpus collected in the wild. This lightweight block can be easily incorporated into a CNN model with little additional computational costs and effectively improves the speaker verification performance compared to the baseline ResNet-LDE model and the Squeeze&Excitation block by a large margin. Detailed ablation studies are also performed to analyze various factors that may impact the performance of the proposed modules. We find that by employing the proposed L2-tf-GTFC transformation block, the Equal Error Rate decreases from 4.56% to 3.07%, a relative 32.68% reduction, and a relative 27.28% improvement in terms of the DCF score. The results indicate that our proposed global context guided transformation modules can efficiently improve the learned speaker representations by achieving time-frequency and channel-wise feature recalibration.
Neural latent variable models enable the discovery of interesting structure in speech audio data. This paper presents a comparison of two different approaches which are broadly based on predicting future time-steps or auto-encoding the input signal. Our study compares the representations learned by vq-vae and vq-wav2vec in terms of sub-word unit discovery and phoneme recognition performance. Results show that future time-step prediction with vq-wav2vec achieves better performance. The best system achieves an error rate of 13.22 on the ZeroSpeech 2019 ABX phoneme discrimination challenge

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا