ﻻ يوجد ملخص باللغة العربية
The 1971 Fortuin-Kasteleyn-Ginibre (FKG) inequality for two monotone functions on a distributive lattice is well known and has seen many applications in statistical mechanics and other fields of mathematics. In 2008 one of us (Sahi) conjectured an extended version of this inequality for all $n>2$ monotone functions on a distributive lattice. Here we prove the conjecture for two special cases: for monotone functions on the unit square in ${mathbb R}^k$ whose upper level sets are $k$-dimensional rectangles, and, more significantly, for arbitrary monotone functions on the unit square in ${mathbb R}^2$. The general case for ${mathbb R}^k, k>2$ remains open.
Consider the normalized adjacency matrices of random $d$-regular graphs on $N$ vertices with fixed degree $dgeq3$. We prove that, with probability $1-N^{-1+{varepsilon}}$ for any ${varepsilon} >0$, the following two properties hold as $N to infty$ pr
We introduce a formula for translating any upper bound on the percolation threshold of a lattice g into a lower bound on the exponential growth rate of lattice animals $a(G)$ and vice-versa. We exploit this to improve on the best known asymptotic bou
Our work deals with symmetric rational functions and probabilistic models based on the fully inhomogeneous six vertex (ice type) model satisfying the free fermion condition. Two families of symmetric rational functions $F_lambda,G_lambda$ are defined
We introduce a method for translating any upper bound on the percolation threshold of a lattice $G$ into a lower bound on the exponential growth rate $a(G)$ of lattice animals and vice-versa. We exploit this in both directions. We improve on the best
We introduce the class of {em strongly Rayleigh} probability measures by means of geometric properties of their generating polynomials that amount to the stability of the latter. This class covers important models such as determinantal measures (e.g.