ﻻ يوجد ملخص باللغة العربية
The High-Luminosity Large Hadron Collider is expected to deliver up to 3000 fb$^{-1}$ of proton-proton collisions at 14 TeV center-of-mass energy. We present prospects for selected heavy-ion, Standard Model and Higgs sector measurements with the CMS detector at the HL-LHC, and discuss potential sensitivity to several beyond-Standard Model new physics scenarios.
In order to get ready for physics at the LHC, the CMS experiment has to be set up for data taking. The data have to be well understood before new physics can be investigated. On the other hand, there are standard processes, well known from previous e
Future Experiments at LHC will have the opportunity to pursue an extensive program on B Physics and CP violation. The expected performance are presented here.
Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of
A rapidity gap program with great potential can be realized at the Large Hadron Collider, LHC, by adding a few simple forward shower counters (FSCs) along the beam line on both sides of the main central detectors, such as CMS. Measurements of single
An estimation of the sensitivity to measure Bs-Bsbar oscillations with the ATLAS detector is given for the detector geometry of initial layout. The delta ms reach is derived from unbinned maximum likelihood amplitude fits using Bs0 events generated with a simplified Monte Carlo method.