ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity and energy of second order hyperbolic boundary value problems on non-timelike hypersurfaces

83   0   0.0 ( 0 )
 نشر من قبل Shiqi Ma
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Shiqi Ma




اسأل ChatGPT حول البحث

We study the second order hyperbolic equations with initial conditions, a nonhomogeneous Dirichlet boundary condition and a source term. We prove the solution possesses $H^1$ regularity on any piecewise $C^1$-smooth non-timelike hypersurfaces. We generalize the notion of energy to these hypersurfaces, and establish an estimate of the difference between the energies on the hypersurface and on the initial plane where the time $t = 0$. The energy is shown to be conserved when the source term and the boundary datum are both zero. We also obtain an $L^2$ estimate for the normal derivative of the solution. In the proofs we first show these results for $C^2$-smooth solutions by using the multiplier methods, and then we go back to the original results by approximation.



قيم البحث

اقرأ أيضاً

151 - Jongkeun Choi , Hongjie Dong , 2021
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall y sufficiently close to a Lipschitz function of $m$ variables, where $m=0,ldots,d-2$, with respect to the Hausdorff distance. We consider solutions in both $L_p$-based Sobolev spaces and $L_{q,p}$-based mixed-norm Sobolev spaces.
We use novel integral representations developed by the second author to prove certain rigorous results concerning elliptic boundary value problems in convex polygons. Central to this approach is the so-called global relation, which is a non-local equ ation in the Fourier space that relates the known boundary data to the unknown boundary values. Assuming that the global relation is satisfied in the weakest possible sense, i.e. in a distributional sense, we prove there exist solutions to Dirichlet, Neumann and Robin boundary value problems with distributional boundary data. We also show that the analysis of the global relation characterises in a straightforward manner the possible existence of both integrable and non-integrable corner-singularities.
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s elf-adjoint distribution theory and the corresponding biorthogonal Fourier analysis. We give applications of the developed analysis to obtain a-priori estimates for solutions of operators that are elliptic within the constructed calculus.
335 - Ziming Shi 2021
We consider second-order elliptic equations with oblique derivative boundary conditions, defined on a family of bounded domains in $mathbb{C}$ that depend smoothly on a real parameter $lambda in [0,1]$. We derive the precise regularity of the solutio ns in all variables, including the parameter $lambda$. More specifically we show that the solution and its derivatives are continuous in all variables, and the Holder norms of the space variables are bounded uniformly in $lambda$.
112 - Hwi Lee , Qiang Du 2021
We present an approach to handle Dirichlet type nonlocal boundary conditions for nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear extrapolation of prescribed boundary data. A novelty is, instead o f using local gradients of the boundary data that are not available a priori, we incorporate nonlocal gradient operators into the formulation to generalize the finite differences-based methods which are pervasive in literature; our particular choice of the nonlocal gradient operators is based on the interplay between a constant kernel function and the geometry of nonlocal interaction neighborhoods. Such an approach can be potentially useful to address similar issues in peridynamics, smoothed particle hydrodynamics and other nonlocal models. We first show the well-posedness of the newly formulated nonlocal problems and then analyze their asymptotic convergence to the local limit as the nonlocality parameter shrinks to zero. We justify the second order localization rate, which is the optimal order attainable in the absence of physical boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا