ترغب بنشر مسار تعليمي؟ اضغط هنا

Readability Research: An Interdisciplinary Approach

329   0   0.0 ( 0 )
 نشر من قبل Zoya Bylinskii
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Readability is on the cusp of a revolution. Fixed text is becoming fluid as a proliferation of digital reading devices rewrite what a document can do. As past constraints make way for more flexible opportunities, there is great need to understand how reading formats can be tuned to the situation and the individual. We aim to provide a firm foundation for readability research, a comprehensive framework for modern, multi-disciplinary readability research. Readability refers to aspects of visual information design which impact information flow from the page to the reader. Readability can be enhanced by changes to the set of typographical characteristics of a text. These aspects can be modified on-demand, instantly improving the ease with which a reader can process and derive meaning from text. We call on a multi-disciplinary research community to take up these challenges to elevate reading outcomes and provide the tools to do so effectively.



قيم البحث

اقرأ أيضاً

In this study, we investigate the attentiveness exhibited by participants sourced through Amazon Mechanical Turk (MTurk), thereby discovering a significant level of inattentiveness amongst the platforms top crowd workers (those classified as Master, with an Approval Rate of 98% or more, and a Number of HITS approved value of 1,000 or more). A total of 564 individuals from the United States participated in our experiment. They were asked to read a vignette outlining one of four hypothetical technology products and then complete a related survey. Three forms of attention check (logic, honesty, and time) were used to assess attentiveness. Through this experiment we determined that a total of 126 (22.3%) participants failed at least one of the three forms of attention check, with most (94) failing the honesty check - followed by the logic check (31), and the time check (27). Thus, we established that significant levels of inattentiveness exist even among the most elite MTurk workers. The study concludes by reaffirming the need for multiple forms of carefully crafted attention checks, irrespective of whether participant quality is presumed to be high according to MTurk criteria such as Master, Approval Rate, and Number of HITS approved. Furthermore, we propose that researchers adjust their proposals to account for the effort and costs required to address participant inattentiveness.
Set systems are used to model data that naturally arises in many contexts: social networks have communities, musicians have genres, and patients have symptoms. Visualizations that accurately reflect the information in the underlying set system make i t possible to identify the set elements, the sets themselves, and the relationships between the sets. In static contexts, such as print media or infographics, it is necessary to capture this information without the help of interactions. With this in mind, we consider three different systems for medium-sized set data, LineSets, EulerView, and MetroSets, and report the results of a controlled human-subjects experiment comparing their effectiveness. Specifically, we evaluate the performance, in terms of time and error, on tasks that cover the spectrum of static set-based tasks. We also collect and analyze qualitative data about the three different visualization systems. Our results include statistically significant differences, suggesting that MetroSets performs and scales better.
A significant problem with immersive virtual reality (IVR) experiments is the ability to compare research conditions. VR kits and IVR environments are complex and diverse but researchers from different fields, e.g. ICT, psychology, or marketing, ofte n neglect to describe them with a level of detail sufficient to situate their research on the IVR landscape. Careful reporting of these conditions may increase the applicability of research results and their impact on the shared body of knowledge on HCI and IVR. Based on literature review, our experience, practice and a synthesis of key IVR factors, in this article we present a reference checklist for describing research conditions of IVR experiments. Including these in publications will contribute to the comparability of IVR research and help other researchers decide to what extent reported results are relevant to their own research goals. The compiled checklist is a ready-to-use reference tool and takes into account key hardware, software and human factors as well as diverse factors connected to visual, audio, tactile, and other aspects of interaction.
Many science advances have been possible thanks to the use of research software, which has become essential to advancing virtually every Science, Technology, Engineering and Mathematics (STEM) discipline and many non-STEM disciplines including social sciences and humanities. And while much of it is made available under open source licenses, work is needed to develop, support, and sustain it, as underlying systems and software as well as user needs evolve. In addition, the changing landscape of high-performance computing (HPC) platforms, where performance and scaling advances are ever more reliant on software and algorithm improvements as we hit hardware scaling barriers, is causing renewed tension between sustainability of software and its performance. We must do more to highlight the trade-off between performance and sustainability, and to emphasize the need for sustainability given the fact that complex software stacks dont survive without frequent maintenance; made more difficult as a generation of developers of established and heavily-used research software retire. Several HPC forums are doing this, and it has become an active area of funding as well. In response, the authors organized and ran a panel at the SC18 conference. The objectives of the panel were to highlight the importance of sustainability, to illuminate the tension between pure performance and sustainability, and to steer SC community discussion toward understanding and addressing this issue and this tension. The outcome of the discussions, as presented in this paper, can inform choices of advance compute and data infrastructures to positively impact future research software and future research.
This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE wi ll be a high intensity particle factory, based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design more efficient drugs? But also how does an electronic chip behave under the effect of radiations? How can the heat flow in a large heat exchanger be optimized? The scientific potential of IRIDE is far reaching and justifies the construction of such a large facility in Italy in synergy with the national research institutes and companies and in the framework of the European and international research. It will impact also on R&D work for ILC, FEL, and will be complementarity to other large scale accelerator projects. IRIDE is also intended to be realized in subsequent stages of development depending on the assigned priorities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا