ترغب بنشر مسار تعليمي؟ اضغط هنا

Point Source Localization with a Planar Optical Phased Array Compressive Sensor

91   0   0.0 ( 0 )
 نشر من قبل Julian Brown
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julian A. Brown




اسأل ChatGPT حول البحث

Compressive sensing has been used to demonstrate scene reconstruction and source localization in a wide variety of devices. To date, optical compressive sensors have not been able to achieve significant volume reduction relative to conventional optics of equivalent angular resolution. Here, we adapt silicon-photonic optical phased array technology to demonstrate, to our knowledge, the first application of compressive imaging in a photonic-integrated device. Our novel sensor consists of an $8times 8$ grid of grating couplers with a spacing of $100~mu$m. Path-matched waveguides route to a single multimode interferometer (MMI), which mixes and randomizes the signals into 64 outputs to be used for compressed sensing. Our device is fully passive, having no need for phase shifters, as measurement matrix calibration makes the measurements robust to phase errors. For testing, we use an Amplified Spontaneous Emission (ASE) source with a bandwidth of 40 nm, centered at 1545 nm. We demonstrate simultaneous multi-point (2 sources demonstrated in this work) brightness recovery and localization with better than 10 arcsecond precision in a sub-millimeter thick form-factor. We achieve a single source recovery rate higher than 99.9% using 10 of the 64 outputs, and a 90% recovery rate with only 6 outputs, 10 times fewer than the 64 needed for conventional imaging. This planar optical phased array compressive sensor is well-suited for imaging sparse scenes in applications constrained by form factor, volume, or high-cost detectors, with the potential to revolutionize endoscopy, beam locators, and LIDAR.



قيم البحث

اقرأ أيضاً

237 - Nathan Dostart 2020
Optical phased arrays (OPAs) which beam-steer in 2D have so far been unable to pack emitting elements at $lambda/2$ spacing, leading to grating lobes which limit the field-of-view, introduce signal ambiguity, and reduce optical efficiency. Vernier sc hemes, which use paired transmitter and receiver phased arrays with different periodicity, deliberately misalign the transmission and receive patterns so that only a single pairing of transmit/receive lobes permit a signal to be detected. A pair of OPAs designed to exploit this effect thereby effectively suppress the effects of grating lobes and recover the systems field-of-view, avoid potential ambiguities, and reduce excess noise. Here we analytically evaluate Vernier schemes with arbitrary phase control to find optimal configurations, as well as elucidate the manner in which a Vernier scheme can recover the full field-of-view. We present the first experimental implementation of a Vernier scheme and demonstrate grating lobe suppression using a pair of 2D wavelength-steered OPAs. These results present a route forward for addressing the pervasive issue of grating lobes, significantly alleviating the need for dense emitter pitches.
This document describes our submission to the 2018 LOCalization And TrAcking (LOCATA) challenge (Tasks 1, 3, 5). We estimate the 3D position of a speaker using the Global Coherence Field (GCF) computed from multiple microphone pairs of a DICIT planar array. One of the main challenges when using such an array with omnidirectional microphones is the front-back ambiguity, which is particularly evident in Task 5. We address this challenge by post-processing the peaks of the GCF and exploiting the attenuation introduced by the frame of the array. Moreover, the intermittent nature of speech and the changing orientation of the speaker make localization difficult. For Tasks 3 and 5, we also employ a Particle Filter (PF) that favors the spatio-temporal continuity of the localization results.
A photonic integrated circuit (PIC) comprised of an 11 cm multimode speckle waveguide, a 1x32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of radio-frequency (RF) signal bandwidth from 2.5 to 4.5 GHz using compressive sensing (CS). Incoming RF signals are modulated onto chirped optical pulses which are input to the multimode waveguide. The multimode waveguide produces the random projections needed for CS via optical speckle. The time-varying phase and amplitude of two test RF signals between 2.5 and 4.5 GHz are successfully recovered using the standard penalized $l_1$-norm method. The use of a passive PIC serves as an initial step towards the miniaturization of a compressive sensing RF receiver.
In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach allowing for lower excess loss compared to previously shown PIC-based OCT systems, facilitating a parallelization of measurement units. As a proof of concept for the low-loss path routing, a silicon nitride PIC-based single-channel swept source OCT system operating at 840 nm was implemented and used to acquire in-vivo tomograms of a human retina. The fabrication of the PIC was done via CMOS-compatible plasma-enhanced chemical vapor deposition to allow future monolithic co-integration with photodiodes and read-out electronics. A performance analysis using the results of the implemented photonic building blocks shows a potential tenfold increase of the acquisition speed for a multi-channel system compared to an ideal lossless single-channel system with the same signal-to-noise ratio.
Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat gr ating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا