ترغب بنشر مسار تعليمي؟ اضغط هنا

ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE

149   0   0.0 ( 0 )
 نشر من قبل Qingzhong Ai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies show that advanced priors play a major role in deep generative models. Exemplar VAE, as a variant of VAE with an exemplar-based prior, has achieved impressive results. However, due to the nature of model design, an exemplar-based model usually requires vast amounts of data to participate in training, which leads to huge computational complexity. To address this issue, we propose Bayesian Pseudocoresets Exemplar VAE (ByPE-VAE), a new variant of VAE with a prior based on Bayesian pseudocoreset. The proposed prior is conditioned on a small-scale pseudocoreset rather than the whole dataset for reducing the computational cost and avoiding overfitting. Simultaneously, we obtain the optimal pseudocoreset via a stochastic optimization algorithm during VAE training aiming to minimize the Kullback-Leibler divergence between the prior based on the pseudocoreset and that based on the whole dataset. Experimental results show that ByPE-VAE can achieve competitive improvements over the state-of-the-art VAEs in the tasks of density estimation, representation learning, and generative data augmentation. Particularly, on a basic VAE architecture, ByPE-VAE is up to 3 times faster than Exemplar VAE while almost holding the performance. Code is available at our supplementary materials.



قيم البحث

اقرأ أيضاً

Variational Autoencoder is a scalable method for learning latent variable models of complex data. It employs a clear objective that can be easily optimized. However, it does not explicitly measure the quality of learned representations. We propose a Variational Mutual Information Maximization Framework for VAE to address this issue. It provides an objective that maximizes the mutual information between latent codes and observations. The objective acts as a regularizer that forces VAE to not ignore the latent code and allows one to select particular components of it to be most informative with respect to the observations. On top of that, the proposed framework provides a way to evaluate mutual information between latent codes and observations for a fixed VAE model.
Analyzing the structure of proteins is a key part of understanding their functions and thus their role in biology at the molecular level. In addition, design new proteins in a methodical way is a major engineering challenge. In this work, we introduc e a joint geometric-neural networks approach for comparing, deforming and generating 3D protein structures. Viewing protein structures as 3D open curves, we adopt the Square Root Velocity Function (SRVF) representation and leverage its suitable geometric properties along with Deep Residual Networks (ResNets) for a joint registration and comparison. Our ResNets handle better large protein deformations while being more computationally efficient. On top of the mathematical framework, we further design a Geometric Variational Auto-Encoder (G-VAE), that once trained, maps original, previously unseen structures, into a low-dimensional (latent) hyper-sphere. Motivated by the spherical structure of the pre-shape space, we naturally adopt the von Mises-Fisher (vMF) distribution to model our hidden variables. We test the effectiveness of our models by generating novel protein structures and predicting completions of corrupted protein structures. Experimental results show that our method is able to generate plausible structures, different from the structures in the training data.
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. Traditionally, such a structure is fixed to be a vector space with data variations represented by translation s along individual latent dimensions. We argue this simple structure is suboptimal since it requires the model to learn to discard the properties (e.g. different scales of changes, different levels of abstractness) of data variations, which is an extra work than equivariance learning. Instead, we propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations. Considering it is hard to conduct training on group structures, we focus on Lie groups and adopt a parameterization using Lie algebra. Based on the parameterization, some disentanglement learning constraints are naturally derived. A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning. Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
Variational autoencoders (VAEs) provide an effective and simple method for modeling complex distributions. However, training VAEs often requires considerable hyperparameter tuning to determine the optimal amount of information retained by the latent variable. We study the impact of calibrated decoders, which learn the uncertainty of the decoding distribution and can determine this amount of information automatically, on the VAE performance. While many methods for learning calibrated decoders have been proposed, many of the recent papers that employ VAEs rely on heuristic hyperparameters and ad-hoc modifications instead. We perform the first comprehensive comparative analysis of calibrated decoder and provide recommendations for simple and effective VAE training. Our analysis covers a range of image and video datasets and several single-image and sequential VAE models. We further propose a simple but novel modification to the commonly used Gaussian decoder, which computes the prediction variance analytically. We observe empirically that using heuristic modifications is not necessary with our method. Project website is at https://orybkin.github.io/sigma-vae/
Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in various domains. However, they struggle to generate high-quality images, especially when samples are obtained from the prior without any t empering. One explanation for VAEs poor generative quality is the prior hole problem: the prior distribution fails to match the aggregate approximate posterior. Due to this mismatch, there exist areas in the latent space with high density under the prior that do not correspond to any encoded image. Samples from those areas are decoded to corrupted images. To tackle this issue, we propose an energy-based prior defined by the product of a base prior distribution and a reweighting factor, designed to bring the base closer to the aggregate posterior. We train the reweighting factor by noise contrastive estimation, and we generalize it to hierarchical VAEs with many latent variable groups. Our experiments confirm that the proposed noise contrastive priors improve the generative performance of state-of-the-art VAEs by a large margin on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ 256 datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا