ترغب بنشر مسار تعليمي؟ اضغط هنا

Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression

133   0   0.0 ( 0 )
 نشر من قبل William Stephenson
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Models like LASSO and ridge regression are extensively used in practice due to their interpretability, ease of use, and strong theoretical guarantees. Cross-validation (CV) is widely used for hyperparameter tuning in these models, but do practical optimization methods minimize the true out-of-sample loss? A recent line of research promises to show that the optimum of the CV loss matches the optimum of the out-of-sample loss (possibly after simple corrections). It remains to show how tractable it is to minimize the CV loss. In the present paper, we show that, in the case of ridge regression, the CV loss may fail to be quasiconvex and thus may have multiple local optima. We can guarantee that the CV loss is quasiconvex in at least one case: when the spectrum of the covariate matrix is nearly flat and the noise in the observed responses is not too high. More generally, we show that quasiconvexity status is independent of many properties of the observed data (response norm, covariate-matrix right singular vectors and singular-value scaling) and has a complex dependence on the few that remain. We empirically confirm our theory using simulated experiments.



قيم البحث

اقرأ أيضاً

Cross-validation (CV) is a technique for evaluating the ability of statistical models/learning systems based on a given data set. Despite its wide applicability, the rather heavy computational cost can prevent its use as the system size grows. To res olve this difficulty in the case of Bayesian linear regression, we develop a formula for evaluating the leave-one-out CV error approximately without actually performing CV. The usefulness of the developed formula is tested by statistical mechanical analysis for a synthetic model. This is confirmed by application to a real-world supernova data set as well.
Understanding generalization and estimation error of estimators for simple models such as linear and generalized linear models has attracted a lot of attention recently. This is in part due to an interesting observation made in machine learning commu nity that highly over-parameterized neural networks achieve zero training error, and yet they are able to generalize well over the test samples. This phenomenon is captured by the so called double descent curve, where the generalization error starts decreasing again after the interpolation threshold. A series of recent works tried to explain such phenomenon for simple models. In this work, we analyze the asymptotics of estimation error in ridge estimators for convolutional linear models. These convolutional inverse problems, also known as deconvolution, naturally arise in different fields such as seismology, imaging, and acoustics among others. Our results hold for a large class of input distributions that include i.i.d. features as a special case. We derive exact formulae for estimation error of ridge estimators that hold in a certain high-dimensional regime. We show the double descent phenomenon in our experiments for convolutional models and show that our theoretical results match the experiments.
In many applications, we have access to the complete dataset but are only interested in the prediction of a particular region of predictor variables. A standard approach is to find the globally best modeling method from a set of candidate methods. Ho wever, it is perhaps rare in reality that one candidate method is uniformly better than the others. A natural approach for this scenario is to apply a weighted $L_2$ loss in performance assessment to reflect the region-specific interest. We propose a targeted cross-validation (TCV) to select models or procedures based on a general weighted $L_2$ loss. We show that the TCV is consistent in selecting the best performing candidate under the weighted $L_2$ loss. Experimental studies are used to demonstrate the use of TCV and its potential advantage over the global CV or the approach of using only local data for modeling a local region. Previous investigations on CV have relied on the condition that when the sample size is large enough, the ranking of two candidates stays the same. However, in many applications with the setup of changing data-generating processes or highly adaptive modeling methods, the relative performance of the methods is not static as the sample size varies. Even with a fixed data-generating process, it is possible that the ranking of two methods switches infinitely many times. In this work, we broaden the concept of the selection consistency by allowing the best candidate to switch as the sample size varies, and then establish the consistency of the TCV. This flexible framework can be applied to high-dimensional and complex machine learning scenarios where the relative performances of modeling procedures are dynamic.
89 - Yifan Chen , Yun Yang 2021
Nystrom approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling method heavily relies on correctly estimating the statistical leverage scores for forming the sampling distribution, which can be as costly as solving the original KRR. In this work, we propose a linear time (modulo poly-log terms) algorithm to accurately approximate the statistical leverage scores in the stationary-kernel-based KRR with theoretical guarantees. Particularly, by analyzing the first-order condition of the KRR objective, we derive an analytic formula, which depends on both the input distribution and the spectral density of stationary kernels, for capturing the non-uniformity of the statistical leverage scores. Numerical experiments demonstrate that with the same prediction accuracy our method is orders of magnitude more efficient than existing methods in selecting the representative sub-samples in the Nystrom approximation.
Tensor linear regression is an important and useful tool for analyzing tensor data. To deal with high dimensionality, CANDECOMP/PARAFAC (CP) low-rank constraints are often imposed on the coefficient tensor parameter in the (penalized) $M$-estimation. However, we show that the corresponding optimization may not be attainable, and when this happens, the estimator is not well-defined. This is closely related to a phenomenon, called CP degeneracy, in low-rank tensor approximation problems. In this article, we provide useful results of CP degeneracy in tensor regression problems. In addition, we provide a general penalized strategy as a solution to overcome CP degeneracy. The asymptotic properties of the resulting estimation are also studied. Numerical experiments are conducted to illustrate our findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا