ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a general scheme to obtain the symmetry operators in the asymmetric quantum Rabi model within Bogoliubov operator approaches. The previous symmetry operators for small integer biases can be extremely easily reproduced in our scheme. Moreover, we can easily obtain the symmetry operators for arbitrary large biases hierarchically, which is perhaps hardly treated with the standard approach based on the expansions on the original Fock space.
The hidden $mathbb{Z}_2$ symmetry of the asymmetric quantum Rabi model (AQRM) has recently been revealed via a systematic construction of the underlying symmetry operator. Based on the AQRM result, we propose an ansatz for the general form of the sym
In this paper, we derive the symmetry operators ($J$s) in the asymmetric two-photon quantum Rabi models in terms of Bogoliubov operator approaches. $ J^2$ can be expressed as a polynomial in terms of the Hamiltonian, which uncovers the $mathbb{Z}_{2}
The concept of the polaron in condensed matter physics has been extended to the Rabi model, where polarons resulting from the coupling between a two-level system and single-mode photons represent two oppositely displaced oscillators. Interestingly, t
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and a
The asymmetric quantum Rabi model (AQRM) has a broken $mathbb{Z}_2$ symmetry, with generally a non-degenerate eigenvalue spectrum. In some special cases where the asymmetric parameter is a multiple of the cavity frequency, stable level crossings typi