ﻻ يوجد ملخص باللغة العربية
Previously, the authors proved that the presentation complex of a one-relator group $G$ satisfies a geometric condition called negative immersions if every two-generator, one-relator subgroup of $G$ is free. Here, we prove that one-relator groups with negative immersions are coherent, answering a question of Baumslag in this case. Other strong constraints on the finitely generated subgroups also follow such as, for example, the co-Hopf property. The main new theorem strengthens negative immersions to uniform negative immersions, using a rationality theorem proved with linear-programming techniques.
We prove a freeness theorem for low-rank subgroups of one-relator groups. Let $F$ be a free group, and let $win F$ be a non-primitive element. The primitivity rank of $w$, $pi(w)$, is the smallest rank of a subgroup of $F$ containing $w$ as an imprim
We show that any one-relator group $G=F/langlelangle wranglerangle$ with torsion is coherent -- i.e., that every finitely generated subgroup of $G$ is finitely presented -- answering a 1974 question of Baumslag in this case.
In this paper, we prove that two-generator one-relator groups with depth less than or equal to 3 can be effectively embedded into a tower of HNN-extensions in which each group has the effective standard normal form. We give an example to show how to
We give several sufficient conditions for uniform exponential growth in the setting of virtually torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic group that is also acylindrically hyperbolic has uniform expone
We introduce a quantitative characterization of subgroup alternatives modeled on the Tits alternative in terms of group laws and investigate when this property is preserved under extensions. We develop a framework that lets us expand the classes of g