ﻻ يوجد ملخص باللغة العربية
Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field.
We show that pharmacosiderite is a novel cluster antiferromagnet comprising frustrated regular tetrahedra made of spin-5/2 Fe3+ ions that are arranged in the primitive cubic lattice. The connectivity of the tetrahedra and the inter-cluster interactio
Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional
Hexagonal CeRhSn with paramagnetic $4f$ moments on a distorted Kagome lattice displays zero-field quantum critical behavior related to geometrical frustration. We report high-resolution thermal expansion and magnetostriction measurements under multie
Triangular Heisenberg antiferromagnets are prototypes of geometric frustration, even if for nearest-neighbor interactions quantum fluctuations are not usually strong enough to destroy magnetic ordering: stronger frustration is required to stabilize a
The classical Heisenberg antiferromagnet on a triangular lattice with the single-ion anisotropy of the easy-axis type is theoretically investigated. The mean-field phase diagram in an external magnetic field is constructed. Three finite-temperature B