ﻻ يوجد ملخص باللغة العربية
Dehmelt and VanDycks famous 1987 measurement of the electron and positron g-factor is still the most precise g-factor comparison in the lepton sector, and a sensitive test of possible CPT violation. A complementary g-factor comparison between the proton and the antiproton is highly desirable to test CPT symmetry in the baryon sector. Current experiments, based on Dehmelts continuous Stern-Gerlach effect and the double Penning-trap technique, are making rapid progress. They are, however, extremely difficult to carry out because ground state cooling using cryogenic techniques is virtually impossible for heavy baryons, and because the continous Stern-Gerlach effect scales as $mu$/m, where m is the mass of the particle and $mu$ its magnetic moment. Both difficulties will ultimately limit the accuracy. We discuss experimental prospects of realizing an alternative approach to a g-factor comparison with single (anti)protons, based on quantum logic techniques proposed by Heinzen and Wineland and by Wineland et al. The basic idea is to cool, control and measure single (anti-)protons through interaction with a well-controlled atomic ion.
We discuss laser-based and quantum logic inspired cooling and detection methods amenable to single (anti-)protons. These would be applicable e.g. in a g-factor based test of CPT invariance as currently pursued within the BASE collaboration. Towards t
Current experimental efforts to test the fundamental CPT symmetry with single (anti-)protons are progressing at a rapid pace but are hurt by the nonzero temperature of particles and the difficulty of spin state detection. We describe a laser-based an
Cosmological observations as well as theoretical approaches to physics beyond the Standard Model provide strong motivations for experimental tests of fundamental symmetries, such as CPT invariance. In this context, the availability of cold baryonic a
Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing. Bipartite entangled states of identical particles have been generated and studied in several experiments, and pos
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surfac