ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent vectorial switch of optomechanical entanglement

62   0   0.0 ( 0 )
 نشر من قبل Ya-Feng Jiao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The polarizations of optical fields, besides field intensities, provide more degrees of freedom to manipulate coherent light-matter interactions. Here we propose how to achieve a coherent switch of optomechanical entanglement in a polarized-light-driven cavity system. We show that by tuning the polarizations of the driving field, the effective optomechanical coupling can be well controlled and, as a result, quantum entanglement between the mechanical oscillator and the optical transverse electric (TE) mode can be coherently and reversibly switched to that between the same phonon mode and the optical transverse magnetic (TM) mode. This ability of switching optomechanical entanglement with such a vectorial device can be important for building a quantum network being capable of efficient quantum information interchanges between processing nodes and flying photons.



قيم البحث

اقرأ أيضاً

A strategy for generating entanglement in two separated optomechanical oscillators is analysed, using entangled radiation produced from downconversion and stored in an initiating cavity. We show that the use of pulsed entanglement with optimally shap ed temporal modes can efficiently transfer quantum entanglement into a mechanical mode, then remove it after a fixed waiting time for measurement. This protocol could provide new avenues to test for bounds on decoherence in massive systems that are spatially separated, as originally suggested by Wendell Furry [1] not long after the discussion by Einstein-Podolsky-Rosen (EPR) and Schrodinger of entanglement.
146 - Qing Lin , Bing He , R. Ghobadi 2013
The radiation pressure induced coupling between an optical cavity field and a mechanical oscillator can create entanglement between them. In previous works this entanglement was treated as that of the quantum fluctuations of the cavity and mechanical modes around their classical mean values. Here we provide a fully quantum approach to optomechanical entanglement, which goes beyond the approximation of classical mean motion plus quantum fluctuation, and applies to arbitrary cavity drive. We illustrate the real-time evolution of optomechanical entanglement under drive of arbitrary detuning to show the existence of high, robust and stable entanglement in blue detuned regime, and highlight the quantum noise effects that can cause entanglement sudden death and revival.
107 - Lan Zhou , S. Yang , Yu-xi Liu 2010
Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings, by modulating the energy level spacing of the TLS with a high frequency signal. We show that the TLS-- surroundings interaction can be turned on or off when the ratio between the amplitude and the frequency of the modulating field is adjusted to be a zero of a Bessel function. The quantum Zeno effect of the TLS can also be observed by the vanishing of the photon reflection at these zeros. Based on these results, we propose a quantum switch to control the transport of a single photon in a 1D waveguide. Our analytical results agree well with numerical results using Floquet theory.
The radiation-pressure driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light. These correlations result in squeezed light -- light with quantum noise lo wer than shot noise in some quadratures, and higher in others. Due to this lower quantum uncertainty, squeezed light can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave (GW) detectors. For optomechanical squeezers, thermally driven fluctuations of the mechanical oscillators position makes it difficult to observe the quantum correlations at room temperature, and at low frequencies. Here we present a measurement of optomechanically (OM) squeezed light, performed at room-temperature, in a broad band near audio-frequency regions relevant to GW detectors. We observe sub-poissonian quantum noise in a frequency band of 30 kHz to 70 kHz with a maximum reduction of 0.7 $pm$ 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on calibration of shot noise.
The temperature dependence of the asymmetry between Stokes and anti-Stokes Raman scattering can be exploited for self-calibrating, optically-based thermometry. In the context of cavity optomechanics, we observe the cavity-enhanced scattering of light interacting with the standing-wave drumhead modes of a silicon nitride membrane mechanical resonator. The ratio of the amplitude of Stokes to anti-Stokes scattered light is used to measure temperatures of optically-cooled mechanical modes down to the level of a few vibrational quanta. We demonstrate that the Raman-ratio technique is able to measure the physical temperature of our device over a range extending from cryogenic temperatures to within an order of magnitude of room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا