ترغب بنشر مسار تعليمي؟ اضغط هنا

DeHumor: Visual Analytics for Decomposing Humor

81   0   0.0 ( 0 )
 نشر من قبل Xingbo Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite being a critical communication skill, grasping humor is challenging -- a successful use of humor requires a mixture of both engaging content build-up and an appropriate vocal delivery (e.g., pause). Prior studies on computational humor emphasize the textual and audio features immediately next to the punchline, yet overlooking longer-term context setup. Moreover, the theories are usually too abstract for understanding each concrete humor snippet. To fill in the gap, we develop DeHumor, a visual analytical system for analyzing humorous behaviors in public speaking. To intuitively reveal the building blocks of each concrete example, DeHumor decomposes each humorous video into multimodal features and provides inline annotations of them on the video script. In particular, to better capture the build-ups, we introduce content repetition as a complement to features introduced in theories of computational humor and visualize them in a context linking graph. To help users locate the punchlines that have the desired features to learn, we summarize the content (with keywords) and humor feature statistics on an augmented time matrix. With case studies on stand-up comedy shows and TED talks, we show that DeHumor is able to highlight various building blocks of humor examples. In addition, expert interviews with communication coaches and humor researchers demonstrate the effectiveness of DeHumor for multimodal humor analysis of speech content and vocal delivery.



قيم البحث

اقرأ أيضاً

Understanding and tuning the performance of extreme-scale parallel computing systems demands a streaming approach due to the computational cost of applying offline algorithms to vast amounts of performance log data. Analyzing large streaming data is challenging because the rate of receiving data and limited time to comprehend data make it difficult for the analysts to sufficiently examine the data without missing important changes or patterns. To support streaming data analysis, we introduce a visual analytic framework comprising of three modules: data management, analysis, and interactive visualization. The data management module collects various computing and communication performance metrics from the monitored system using streaming data processing techniques and feeds the data to the other two modules. The analysis module automatically identifies important changes and patterns at the required latency. In particular, we introduce a set of online and progressive analysis methods for not only controlling the computational costs but also helping analysts better follow the critical aspects of the analysis results. Finally, the interactive visualization module provides the analysts with a coherent view of the changes and patterns in the continuously captured performance data. Through a multi-faceted case study on performance analysis of parallel discrete-event simulation, we demonstrate the effectiveness of our framework for identifying bottlenecks and locating outliers.
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate. While a variety of automated methods have been developed to identi fy when concept drift occurs, there is limited support for analysts who need to understand and correct their models when drift is detected. In this paper, we present a visual analytics method, DriftVis, to support model builders and analysts in the identification and correction of concept drift in streaming data. DriftVis combines a distribution-based drift detection method with a streaming scatterplot to support the analysis of drift caused by the distribution changes of data streams and to explore the impact of these changes on the models accuracy. A quantitative experiment and two case studies on weather prediction and text classification have been conducted to demonstrate our proposed tool and illustrate how visual analytics can be used to support the detection, examination, and correction of concept drift.
Tuning machine learning models, particularly deep learning architectures, is a complex process. Automated hyperparameter tuning algorithms often depend on specific optimization metrics. However, in many situations, a developer trades one metric again st another: accuracy versus overfitting, precision versus recall, smaller models and accuracy, etc. With deep learning, not only are the models representations opaque, the models behavior when parameters knobs are changed may also be unpredictable. Thus, picking the best model often requires time-consuming model comparison. In this work, we introduce LAMVI-2, a visual analytics system to support a developer in comparing hyperparameter settings and outcomes. By focusing on word-embedding models (deep learning for text) we integrate views to compare both high-level statistics as well as internal model behaviors (e.g., comparing word distances). We demonstrate how developers can work with LAMVI-2 to more quickly and accurately narrow down an appropriate and effective application-specific model.
Bank credit rating classifies banks into different levels based on publicly disclosed and internal information, serving as an important input in financial risk management. However, domain experts have a vague idea of exploring and comparing different bank credit rating schemes. A loose connection between subjective and quantitative analysis and difficulties in determining appropriate indicator weights obscure understanding of bank credit ratings. Furthermore, existing models fail to consider bank types by just applying a unified indicator weight set to all banks. We propose RatingVis to assist experts in exploring and comparing different bank credit rating schemes. It supports interactively inferring indicator weights for banks by involving domain knowledge and considers bank types in the analysis loop. We conduct a case study with real-world bank data to verify the efficacy of RatingVis. Expert feedback suggests that our approach helps them better understand different rating schemes.
Parallel coordinates plot is one of the most popular and widely used visualization techniques for multi-dimensional data sets. Its main challenges for large-scale data sets are visual clutter and overplotting which hamper the recognition of patterns and trends in the data. In this paper, we propose a confluent drawing approach of parallel coordinates to support the web-based interactive visual analytics of large multi-dimensional data. The proposed method maps multi-dimensional data to node-link diagrams through the data binning-based clustering for each dimension. It uses density-based confluent drawing to visualize clusters and edges to reduce visual clutter and overplotting. Its rendering time is independent of the number of data items. It supports interactive visualization of large data sets without hardware acceleration in a normal web browser. Moreover, we design interactions to control the data binning process with this approach to support interactive visual analytics of large multi-dimensional data sets. Based on the proposed approach, we implement a web-based visual analytics application. The efficiency of the proposed method is examined through experiments on several data sets. The effectiveness of the proposed method is evaluated through a user study, in which two typical tasks of parallel coordinates plot are performed by participants to compare the proposed method with another parallel coordinates bundling technique. Results show that the proposed method significantly enhances the web-based interactive visual analytics of large multi-dimensional data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا