Skellam and Time-Changed Variants of the Generalized Fractional Counting Process


الملخص بالإنكليزية

In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-chang

تحميل البحث