ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmon-Exciton Coupling Effect on Plasmon Damping

355   0   0.0 ( 0 )
 نشر من قبل Guowei Lu Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmon decay via the surface or interface is a critical process for practical energy conversion and plasmonic catalysis. However, the relationship between plasmon damping and the coupling between the plasmon and 2D materials is still unclear. The spectral splitting due to plasmon-exciton interaction impedes the conventional single-particle method to evaluate the plasmon damping rate by the spectral linewidth directly. Here, we investigated the interaction between a single gold nanorod (GNR) and 2D materials using the single-particle spectroscopy method assisted with in situ nanomanipulation technique by comparing scattering intensity and linewidth together. Our approach allows us to indisputably identify that the plasmon-exciton coupling in the GNR-WSe2 hybrid would induce plasmon damping. We can also isolate the contribution between the charge transfer channel and resonant energy transfer channel for the plasmon decay in the GNR-graphene hybrid by comparing that with thin hBN layers as an intermediate medium to block the charge transfer. We find out that the contact layer between the GNR and 2D materials contributes most of the interfacial plasmon damping. These findings contribute to a deep understanding of interfacial excitonic effects on the plasmon and 2D materials hybrid.



قيم البحث

اقرأ أيضاً

299 - Aiqin Hu , Weidong Zhang , Lulu Ye 2021
The phase delay of a local electric field, being well-known in plasmonic nanostructures, has seldom been investigated to modulate the plasmon-exciton interaction. Here, with the single-particle spectroscopy method, we experimentally investigate the p hase effect in plasmon-exciton coupling systems consisting of monolayer WSe2 and an individual gold nanorod. The local plasmon phase delay is tuned by adopting various nanorods with different resonant energies respective to the exciton. We find that the local plasmon phase delay between the excitons and the plasmonic modes is as equally essential as the amplitude. The phase delay modulates the plasmon-exciton coupling considerably, resulting in an asymmetric spectral line-shape due to the interference behavior. There is an excellent agreement for the phase delay between the numerically calculated near-field phase distribution and the experimental results. The local phase delay can act as an effective way to modulate the properties of plexcitonic coupling at the nanoscale, which may have potential applications in nanoscale sensing, solar energy devices, and enhancing nonlinear processes.
Light-matter momentum transfer in plasmonic materials is theoretically discussed in the framework of plasmonic pressure mechanism taking into account non-equilibrium electron dynamics and thermalization process. We show that our approach explains the experimentally observed relationship between the plasmon-related electromotive force and absorption and allows one to correctly predict the magnitude of the plasmon drag emf in flat metal films. We extend our theory to metal films with modulated profiles and show that the simple relationship between plasmonic energy and momentum transfer holds at relatively small amplitudes of height modulation and an approximation of laminar electron drift. Theoretical groundwork is laid for further investigations of shape-controlled plasmon drag in nanostructured metal.
Strong coupling of two-dimensional semiconductor excitons with plasmonic resonators enables control of light-matter interaction at the subwavelength scale. Here we develop strong coupling in plasmonic nano-gap resonators that allow modification of ex citon number contributing to the coupling. Using this system, we not only demonstrate a large vacuum Rabi splitting up to 163 meV and splitting features in photoluminescence spectra, but also reveal that the exciton number can be reduced down to single-digit level (N<10), which is an order lower than that of traditional systems, close to single-exciton based strong coupling. In addition, we prove that the strong coupling process is not affected by the large exciton coherence size that was previously believed to be detrimental to the formation of plasmon-exciton interaction. Our work provides a deeper understanding of storng coupling in two-dimensional semiconductors, paving the way for room temperature quantum optics applications.
Rapid progress in electrically-controlled plasmonics in solids poses a question about effects of electronic reservoirs on the properties of plasmons. We find that plasmons in electronically open systems [i.e. in (semi)conductors connected to leads] a re prone to an additional damping due to charge carrier penetration into contacts and subsequent thermalization. We develop a theory of such lead-induced damping based on kinetic equation with self-consistent electric field, supplemented by microscopic carrier transport at the interfaces. The lifetime of plasmon in electronically open ballistic system appears to be finite, order of conductor length divided by carrier Fermi (thermal) velocity. The reflection loss of plasmon incident on the contact of semi-conductor and perfectly conducting metal also appears to be finite, order of Fermi velocity divided by wave phase velocity. Recent experiments on plasmon-assisted photodetection are discussed in light of the proposed lead-induced damping phenomenon.
Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons enha nce and hybridize with phonons, and that the phonon-plasmon resonances have quality factors as high as 10. Because coherent nanotube plasmonics can strengthen light-matter interactions, it provides a compelling platform for surface-enhanced infrared spectroscopy and tunable, high-performance optical devices at the nanometer scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا