ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck Galactic Cold Clumps at High Galactic Latitude-A Study with CO Lines

95   0   0.0 ( 0 )
 نشر من قبل Fengwei Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13}$CO and C$^{18}$O J=1-0 lines, using the Purple Mountain Observatory 13.7-m telescope. $^{12}$CO (1-0) and $^{13}$CO (1-0) emission was detected in all clumps while C$^{18}$O (1-0) emission was only seen in sixteen clumps. The highest and average latitudes are $71.4^{circ}$ and $37.8^{circ}$, respectively. Fifty-one velocity components were obtained and then each was identified as a single clump. Thirty-three clumps were further mapped at 1$^prime$ resolution and 54 dense cores were extracted. Among dense cores, the average excitation temperature $T_{mathrm{ex}}$ of $^{12}$CO is 10.3 K. The average line widths of thermal and non-thermal velocity dispersions are $0.19$ km s$^{-1}$ and $0.46$ km s$^{-1}$ respectively, suggesting that these cores are dominated by turbulence. Distances of the HGal clumps given by Gaia dust reddening are about $120-360$ pc. The ratio of $X_{13}$/$X_{18}$ is significantly higher than that in the solar neighbourhood, implying that HGal gas has a different star formation history compared to the gas in the Galactic disk. HGal cores with sizes from $0.01-0.1$ pc show no notable Larsons relation and the turbulence remains supersonic down to a scale of slightly below $0.1$ pc. None of the HGal cores which bear masses from 0.01-1 $M_{odot}$ are gravitationally bound and all appear to be confined by outer pressure.



قيم البحث

اقرأ أيضاً

216 - Ningyu Tang , Di Li , Pei Zuo 2019
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrog en H$_2$ and improves our understanding of the atomic to molecular transition in the interstellar medium. HINSA was found in 58% PGCCs that we observed. The column density of HINSA was found to have an intermediate correlation with that of $^{13}$CO, following $rm log( N(HINSA)) = (0.52pm 0.26) log(N_{^{13}CO}) + (10 pm 4.1) $. HI abundance relative to total hydrogen [HI]/[H] has an average value of $4.4times 10^{-3}$, which is about 2.8 times of the average value of previous HINSA surveys toward molecular clouds. For clouds with total column density N$rm_H >5 times 10^{20}$ cm$^{-2}$, an inverse correlation between HINSA abundance and total hydrogen column density is found, confirming the depletion of cold HI gas during molecular gas formation in more massive clouds. Nonthermal line width of $^{13}$CO is about 0-0.5 km s$^{-1}$ larger than that of HINSA. One possible explanation of narrower nonthermal width of HINSA is that HINSA region is smaller than that of $^{13}$CO. Based on an analytic model of H$_2$ formation and H$_2$ dissociation by cosmic ray, we found the cloud ages to be within 10$^{6.7}$-10$^{7.0}$ yr for five sources.
We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 wit h the Early Release Compact Source Catalogue (ERCSC) and contained 915 high S/N sources. It is based on the Planck 48 months mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 545, 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing sources with the 1% largest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density and luminosity. The PGCC sources are located mainly in the solar neighbourhood, up to a distance of 10.5 kpc towards the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful to investigate the evolution from molecular clouds to cores. Finally, the catalogue also includes 54 additional sources located in the SMC and LMC.
Careful analyses of photometric and star count data available for the nine putative young clusters identified by Camargo et al. (2015, 2016) at high Galactic latitudes reveal that none of the groups contain early-type stars, and most are not signific ant density enhancements above field level. 2MASS colours for stars in the groups match those of unreddened late-type dwarfs and giants, as expected for contamination by (mostly) thin disk objects. A simulation of one such field using only typical high latitude foreground stars yields a colour-magnitude diagram that is very similar to those constructed by Camargo et al. (2015, 2016) as evidence for their young groups as well as the means of deriving their reddenings and distances. Although some of the fields are coincident with clusters of galaxies, one must conclude that there is no evidence that the putative clusters are extremely young stellar groups.
Extinction in ultraviolet is much more significant than in optical or infrared, which can be very informative to precisely measure the extinction and understand the dust properties in the low extinction areas. The high Galactic latitude sky is such a n area, important for studying the extragalactic sky and the universe. Based on the stellar parameters measured by the LAMOST and GALAH spectroscopy and the ultraviolet photomery by the emph{GALEX} space telescope, the extinction of 1,244,504 stars in the emph{GALEX}/NUV band and 56,123 stars in the emph{GALEX}/FUV band are calculated precisely. textbf{The error of color excess is 0.009, 0.128 and 0.454 mag for $E_{rm G_{BP}, G_{RP}}$, $E_{rm NUV,G_{BP}}$ and $E_{rm FUV,G_{BP}}$ respectively.} They delineates the emph{GALEX}/NUV extinction map of about a third of the sky mainly at the high Galactic latitude area with an angular resolution of $sim 0.4,, rm deg$. The mean color excess ratio in the entire sky areas is derived to be 3.25, 2.95 and -0.37 for $E_{{rm NUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$, $E_{{rm FUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$ and $E_{{rm FUV,NUV}} / E_{{rm G_{BP},G_{RP}}}$ respectively, which is in general agreement with the previous works, and their changes with the Galactic latitude and the interstellar extinction are discussed.
Planck Galactic Cold Clumps (PGCCs) are contemplated to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillim eter Array (ALMA) at 1.3,mm (band 6) using three different configurations (resolutions $sim$ 0$farcs$35, 1$farcs$0, and 7$farcs$0) to statistically investigate their evolutionary stages and sub-structures. We have obtained images of the 1.3,mm continuum and molecular line emission ($^{12}$CO, and SiO) at an angular resolution of $sim$ 0$farcs$35 ($sim$ 140,au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust-mass $sim$ 0.093,M$_{sun}$ and deconvolved size $sim$ 0$farcs$27. Dense substructures are clearly detected within the central 1000,au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class,0 to Class,I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 ($>$50%) show high-velocity jets in SiO. The CO velocity-extents ($Delta$Vs) span from 4 to 110 km/s with outflow cavity opening angle width at 400,au ranging from $[Theta_{obs}]_{400}$ $sim$ 0$farcs$6 to 3$farcs$9, which corresponds to 33$fdg$4$-$125$fdg$7. For the majority of the outflow sources, the $Delta$Vs show a positive correlation with $[Theta_{obs}]_{400}$, suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا