ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled Nucleation and Growth of Carbon Nitride Films on CNT Fiber Fabric for Photoelectrochemical Applications

56   0   0.0 ( 0 )
 نشر من قبل Juan J Vilatela
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The controlled growth of carbon nitride (CN) films with tailored electronic properties and surface area is quite challenging due to the solid-state reaction and the lack of efficient interaction between C-N monomers and substrates. Herein, controlled growth of CN films over robust carbon nanotubes (CNT) fiber fabric is reported, which is obtained by either direct calcination of melamine on their surface, that yields a bulk material, or by its chemical vapor deposition resulting in hybrid films. These materials are effective electrodes consisting of high surface-area CN containing CNT fiber fabrics acting as a scaffold and a highly conducting built-in current collector. The results confirm that CNTs act as nucleation centers for the formation of CN films, forming close contact at the CN/CNT interphase, and resulting in efficient charge transfer upon illumination and enhanced electrochemical surface area.



قيم البحث

اقرأ أيضاً

Single-photon emitters in gallium nitride (GaN) are gaining interest as attractive quantum systems due to the well-established techniques for growth and nanofabrication of the host material, as well as its remarkable chemical stability and optoelectr onic properties. We investigate the nature of such single-photon emitters in GaN with a systematic analysis of various samples produced under different growth conditions. We explore the effect that intrinsic structural defects (dislocations and stacking faults), doping and crystal orientation in GaN have on the formation of quantum emitters. We investigate the relationship between the position of the emitters (determined via spectroscopy and photoluminescence measurements) and the location of threading dislocations (characterised both via atomic force microscopy and cathodoluminescence). We find that quantum emitters do not correlate with stacking faults or dislocations; instead, they are more likely to originate from point defects or impurities whose density is modulated by the local extended defect density.
Combining high-throughput experiments with machine learning allows quick optimization of parameter spaces towards achieving target properties. In this study, we demonstrate that machine learning, combined with multi-labeled datasets, can additionally be used for scientific understanding and hypothesis testing. We introduce an automated flow system with high-throughput drop-casting for thin film preparation, followed by fast characterization of optical and electrical properties, with the capability to complete one cycle of learning of fully labeled ~160 samples in a single day. We combine regio-regular poly-3-hexylthiophene with various carbon nanotubes to achieve electrical conductivities as high as 1200 S/cm. Interestingly, a non-intuitive local optimum emerges when 10% of double-walled carbon nanotubes are added with long single wall carbon nanotubes, where the conductivity is seen to be as high as 700 S/cm, which we subsequently explain with high fidelity optical characterization. Employing dataset resampling strategies and graph-based regressions allows us to account for experimental cost and uncertainty estimation of correlated multi-outputs, and supports the proving of the hypothesis linking charge delocalization to electrical conductivity. We therefore present a robust machine-learning driven high-throughput experimental scheme that can be applied to optimize and understand properties of composites, or hybrid organic-inorganic materials.
Lightweight parabolic mirrors for solar concentrators have been fabricated using carbon fiber reinforced polymer (CFRP) and a nanometer scale optical surface smoothing technique. The smoothing technique improved the surface roughness of the CFRP surf ace from ~3 {mu}m root mean square (RMS) for as-cast to ~5 nm RMS after smoothing. The surfaces were then coated with metal, which retained the sub-wavelength surface roughness, to produce a high-quality specular reflector. The mirrors were tested in an 11x geometrical concentrator configuration and achieved an optical efficiency of 78% under an AM0 solar simulator. With further development, lightweight CFRP mirrors will enable dramatic improvements in the specific power, power per unit mass, achievable for concentrated photovoltaics in space.
A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on co ntrolling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 {mu}m-2 to < 0.1 {mu}m-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon.
The present work deals with the synthesis of crystalline carbon nitride thin films by microwave plasma assisted chemical vapour deposition in N$_2$/CH$_4$ gas mixture. The discharge analysis by optical emission spectroscopy shows that the increase in the N$_2$/CH$_4$ ratio involves an important production of the CN and C$_2$ radicals. In the films X-ray energy dispersion spectroscopy shows that the N/C ratio decreases when the CH$_4$ percentage in N$_2$ increases. Xray diffraction and electron diffraction are used to study the carbon nitride films nature. Scanning electron microscopy shows that the films consisted of nano-crystalline grains. Carbon balls are also present on the film surface for CH$_4$ percentage higher than 4%. The transmission electron microscopy confirms the nano-structure of the film and shows the isotropic etching of the substrates, during the film growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا