ﻻ يوجد ملخص باللغة العربية
We analyze theoretically and experimentally the triadic resonance instability (TRI) of a plane inertial wave in a rotating fluid. Building on the classical triadic interaction equations between helical modes, we show by numerical integration that the maximum growth rate of the TRI is found for secondary waves that do not propagate in the same vertical plane as the primary wave (the rotation axis is parallel to the vertical). In the inviscid limit, we prove this result analytically, in which case the change in the horizontal propagation direction induced by the TRI evolves from $60^circ$ to $90^circ$ depending on the frequency of the primary wave. Thanks to a wave generator with a large spatial extension in the horizontal direction of invariance of the forced wave, we are able to report experimental evidence that the TRI of a plane inertial wave is three-dimensional. The wavevectors of the secondary waves produced by the TRI are shown to match the theoretical predictions based on the maximum growth rate criterion. These results reveal that the triadic resonant interactions between inertial waves are very efficient at redistributing energy in the horizontal plane, normal to the rotation axis.
Flows forced by a precessional motion can exhibit instabilities of crucial importance, whether they concern the fuel of a flying object or the liquid core of a telluric planet. So far, stability analyses of these flows have focused on the special cas
We discuss an inertial migration of oblate spheroids in a plane channel, where steady laminar flow is generated by a pressure gradient. Our lattice Boltzmann simulations show that spheroids orient in the flow, so that their minor axis coincides with
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for th
A modal stability analysis shows that plane Poiseuille flow of an Oldroyd-B fluid becomes unstable to a `center mode with phase speed close to the maximum base-flow velocity, $U_{max}$. The governing dimensionless groups are the Reynolds number $Re =
A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge selective surface (electric membrane, electrode, or system of micro-/nanochannels) is carried out and analyzed. A special finite-difference method was use