ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellularity of endomorphism algebras of tilting objects

58   0   0.0 ( 0 )
 نشر من قبل Ulrich Thiel
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that, in a highest weight category with duality, the endomorphism algebra of a tilting object is naturally a cellular algebra. Our proof generalizes a recent construction of Andersen, Stroppel, and Tubbenhauer. This result raises the question of whether all cellular algebras can be realized in this way. The construction also works without the presence of a duality and yields standard bases, in the sense of Du and Rui, which have similar combinatorial features to cellular bases. As an application, we obtain standard bases -- and thus a general theory of cell modules -- for Hecke algebras associated to finite complex reflection groups (as introduced by Broue, Malle, and Rouquier) via category $mathcal{O}$ of the rational Cherednik algebra. For real reflection groups these bases are cellular.



قيم البحث

اقرأ أيضاً

281 - Adam A. Allan 2011
Motivated by recent problems regarding the symmetry of Hecke algebras, we investigate the symmetry of the endomorphism algebra $E_P(M)$ for $P$ a $p$-group and $M$ a $kP$-module with $k$ a field of characteristic $p$. We provide a complete analysis f or cyclic $p$-groups and the dihedral 2-groups. For the dihedral 2-groups, this requires the classification of the indecomposable modules in terms of string modules and band modules. We generalize our techniques to consider $E_{Lambda}(M)$ for $Lambda$ a Nakayama algebra, a local algebra, or even an arbitrary algebra.
157 - Weideng Cui 2015
We first give a direct proof of a basis theorem for the cyclotomic Yokonuma-Hecke algebra $Y_{r,n}^{d}(q).$ Our approach follows Kleshchevs, which does not use the representation theory of $Y_{r,n}^{d}(q),$ and so it is very different from that of [C hP2]. We also present two applications. Then we prove that the cyclotomic Yokonuma-Hecke algebra $Y_{r,n}^{d}(q)$ is cellular by constructing an explicit cellular basis, and show that the Jucys-Murphy elements for $Y_{r,n}^{d}(q)$ are JM-elements in the abstract sense. In the appendix, we shall develop the fusion procedure for $Y_{r,n}^{d}(q).$
118 - Weideng Cui 2015
We establish an explicit algebra isomorphism between the affine Yokonuma-Hecke algebra $widehat{Y}_{r,n}(q)$ and a direct sum of matrix algebras with coefficients in tensor products of affine Hecke algebras of type $A.$ As an application of this resu lt, we show that $widehat{Y}_{r,n}(q)$ is affine cellular in the sense of Koenig and Xi, and further prove that it has finite global dimension when the parameter $q$ is not a root of the Poincare polynomial. As another application, we also recover the modular representation theory of $widehat{Y}_{r,n}(q)$ previously obtained in [CW].
103 - Ryo Fujita 2016
We discuss tilting modules of affine quasi-hereditary algebras. We present an existence theorem of indecomposable tilting modules when the algebra has a large center and use it to deduce a criterion for an exact functor between two affine highest wei ght categories to give an equivalence. As an application, we prove that the Arakawa-Suzuki functor [Arakawa-Suzuki, J. of Alg. 209 (1998)] gives a fully faithful embedding of a block of the deformed BGG category of $mathfrak{gl}_{m}$ into the module category of a suitable completion of degenerate affine Hecke algebra of $GL_{n}$.
Let $A$ be a finite-dimensional gentle algebra over an algebraically closed field. We investigate the combinatorial properties of support $tau$-tilting graph of $A$. In particular, it is proved that the support $tau$-tilting graph of $A$ is connected and has the so-called reachable-in-face property. The property was conjectured by Fomin and Zelevinsky for exchange graphs of cluster algebras which was recently confirmed by Cao and Li.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا