ﻻ يوجد ملخص باللغة العربية
We investigate the statistics of photons emitted by tunneling electrons in a single electronic level plasmonic nanojunction. We compute the waiting-time distribution of successive emitted photons $w(tau)$. When the cavity damping rate $kappa$ is larger than the electronic tunneling rate $Gamma$, we show that in the photon-antibunching regime, $w(tau)$ indicates that the average delay-time between two successive photon emission events is given by $1/Gamma$. This is in contrast with the usually considered second-order correlation function of emitted photons, $g^{(2)}(tau)$, which displays the single time scale $1/kappa$. Our analysis shows a relevant example for which $w(tau)$ gives independent information on the photon-emission statistics with respect to $g^{(2)}(tau)$, leading to a physical insight on the problem. We discuss how this information can be extracted from experiments even in presence of a non-perfect photon detection yield.
Recent scanning tunnelling microscopy (STM) experiments reported single-molecule fluorescence induced by tunneling currents in the nanoplasmonic cavity formed by the STM tip and the substrate.The electric field of the cavity mode couples with the cur
A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy induced luminescence (STML) we are able to generate plasmonic light originating from inelastic tunneling processes tha
A single-electron transistor incorporated as part of a nanomechanical resonator represents an extreme limit of electron-phonon coupling. While it allows for fast and sensitive electromechanical measurements, it also introduces backaction forces from
We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction struc- tures which have alternative metastable configurations
We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton s