ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Electrode Configurations in a Large Single Phase Liquid Xenon Detector for Dark Matter Searches

64   0   0.0 ( 0 )
 نشر من قبل Pratibha Juyal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the near future there will be the request for very large liquid Xenon (LXe) detectors for Dark Matter (DM) searches in the 50-ton range. To avoid an impractically long, single drift space of a dual-phase detector, it seems beneficial to use the single-phase technique. Since electrons then can drift in any direction, we can segment the homogeneous medium and thus avoid an excessive maximum drift path of order 4 m. The shorter detector length has several benefits, e.g. requiring a lower cathode voltage for the same drift field. We can easily split the TPC into two regions with the cathode in the center and two anodes at the top and bottom. One also can use multiple TPCs stacked on top of each other in the same liquid volume to reduce the maximum drift length even further. A further division of the drift space by installing an additional anode in the center would require S2 photons to traverse the liquid for several times the Rayleigh scattering length in LXe, which is only 30 - 40 cm. This seems to be excessive for good x - y localization. We therefore suggest a geometry of two independent TPCs with two drift spaces each. Despite earlier publications concerns persisted about the effect of shadowing. A detailed FEM model of the anode regions shows that with an aligned wire arrangement the drifting electrons impinge sideways on the anode in a narrow angular range of width 15$^{circ}$ - 20$^{circ}$. Most S2 photons are emitted in full view of the close-by PMT array. About 37% of the S2 photons are shadowed by the anode wire out of which 30% will be reflected back again on the gold plating of the wires. Thus we can observe 74% of the total S2 light. Compared to a dual-phase detector, however, we do not suffer from the extraction efficiency, sometimes reported as low as 50%.



قيم البحث

اقرأ أيضاً

Large mass single-electron-resolution solid state detectors are desirable to search for low mass dark matter candidates and to measure coherent elastic neutrino nucleus scattering (CE$ u$NS). Here, we present results from a novel 100 g phonon-mediate d Si detector with a new interface architecture. This detector gives a baseline resolution of $sim 1 e^{-}/h^{+}$ pair and a leakage current on the order of $10^{-16}$ A. This was achieved by removing the direct electrical contact between the Si crystal and the metallic electrode, and by increasing the phonon absorption efficiency of the sensors. The phonon signal amplification in the detector shows a linear increase while the signal to noise ratio improves with bias voltage, up to 240 V. This feature enables the detector to operate at a low energy threshold which is beneficial for dark matter and CE$ u$NS like searches.
Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteris tics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46~keV, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74~keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.
The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle inter actions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield ($L_y^{122}=15.2 $pe/keV at zero field), long electron lifetime ($tau > 200 mu$s), and excellent energy resolution ($sigma/E = 1%$ for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.
140 - A. Minamino , K. Abe , Y. Ashie 2009
Liquid xenon is a suitable material for a dark matter search. For future large scale experiments, single phase detectors are attractive due to their simple configuration and scalability. However, in order to reduce backgrounds, they need to fully rel y on liquid xenons self-shielding property. A prototype detector was developed at Kamioka Observatory to establish vertex and energy reconstruction methods and to demonstrate the self-shielding power against gamma rays from outside of the detector. Sufficient self-shielding power for future experiments was obtained.
147 - X. G. Cao , X. Chen , Y. H. Chen 2014
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operate s in dual-phase mode, allowing detection of both prompt scintillation, and ionization charge through proportional scintillation. The central time projection chamber will be staged, with the first stage accommodating a target mass of about 120,kg. In stage II, the target mass will be increased to about 0.5,ton. In the final stage, the detector can be upgraded to a multi-ton target mass. In this paper a detailed description of the stage-I detector design and performance results established during the commissioning phase is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا