ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac equation on a catenoid bridge: a supersymmetric approach

102   0   0.0 ( 0 )
 نشر من قبل Job Furtado Neto
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the Dirac equation for an electron constrained to move on a catenoid surface. We decoupled the two components of the spinor and obtained two Klein-Gordon-like equations. Analytical solutions were obtained using supersymmetric quantum mechanics for two cases, namely, the constant Fermi velocity and the position-dependent Fermi velocity cases.



قيم البحث

اقرأ أيضاً

In this paper we construct $mathcal{N}=2$ supersymmetric (SUSY) quantum mechanics over several configurations of Dirac-$delta$ potentials from one single delta to a Dirac comb rqrq. We show in detail how the building of supersymmetry on potentials w ith delta interactions placed in two or more points on the real line requires the inclusion of quasi-square wells. Therefore, the basic ingredient of a supersymmetric Hamiltonian containing two or more Dirac-$delta$s is the singular potential formed by a Dirac-$delta$ plus a step ($theta$) at the same point. In this $delta/theta$ SUSY Hamiltonian there is only one singlet ground state of zero energy annihilated by the two supercharges or a doublet of ground states paired by supersymmetry of positive energy depending on the relation between the Dirac well strength and the height of the step potential. We find a scenario of either unbroken supersymmetry with Witten index one or supersymmetry breaking when there is one bosonicrqrq and one fermionicrqrq ground state such that the Witten index is zero. We explain next the different structure of the scattering waves produced by three $delta/theta$ potentials with respect to the eigenfunctions arising in the non-SUSY case. In particular, many more bound states paired by supersymmetry exist within the supersymmetric framework compared with the non-SUSY problem. An infinite array of equally spaced $delta$-interactions of the same strength but alternatively attractive and repulsive are susceptible of being promoted to a ${cal N}=2$ supersymmetric system...
146 - Keith A. Earle 2011
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knut h and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.
151 - H. Aratyn , J. van de Leur 2008
We present an explicit method to perform similarity reduction of a Riemann-Hilbert factorization problem for a homogeneous GL (N, C) loop group and use our results to find solutions to the Painleve VI equation for N=3. The tau function of the reduced hierarchy is shown to satisfy the sigma-form of the Painleve VI equation. A class of tau functions of the reduced integrable hierarchy is constructed by means of a Grassmannian formulation. These solutions provide rational solutions of the Painleve VI equation.
We study the electronic properties of a position-dependent effective mass electron on a bilayer graphene catenoid bridge. We propose a position-dependent mass (PDM) as a function of both gaussian and mean curvature. The hamiltonian exhibits parity an d time-reversal steaming from the bridge symmetry. The effective potential contains the da Costa, centrifugal and PDM terms which are concentrated around the catenoid bridge. For zero angular momentum states, the PDM term provides a transition between a reflectionless to a double-well potential. As a result, the bound states undergo a transition from a single state around the bridge throat into two states each one located at rings around the bridge. Above some critical value of the PDM coupling constant, the degeneracy is restored due to double-well tunneling resonance.
We construct a new class of solutions to the dispersionless hyper--CR equation, and show how any solution to this equation gives rise to a supersymmetric Einstein--Maxwell cosmological space--time in $(3+1)$--dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا