ﻻ يوجد ملخص باللغة العربية
Survey telescopes such as the Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order of magnitude, discovering millions of events; however, it is impossible to spectroscopically confirm the class for all the SNe discovered. Thus, photometric classification is crucial but its accuracy depends on the not-yet-finalized observing strategy of Rubin Observatorys Legacy Survey of Space and Time (LSST). We quantitatively analyze the impact of the LSST observing strategy on SNe classification using the simulated multi-band light curves from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). First, we augment the simulated training set to be representative of the photometric redshift distribution per supernovae class, the cadence of observations, and the flux uncertainty distribution of the test set. Then we build a classifier using the photometric transient classification library snmachine, based on wavelet features obtained from Gaussian process fits, yielding similar performance to the winning PLAsTiCC entry. We study the classification performance for SNe with different properties within a single simulated observing strategy. We find that season length is an important factor, with light curves of 150 days yielding the highest classification performance. Cadence is also crucial for SNe classification; events with median inter-night gap of <3.5 days yield higher performance. Interestingly, we find that large gaps (>10 days) in light curve observations does not impact classification performance as long as sufficient observations are available on either side, due to the effectiveness of the Gaussian process interpolation. This analysis is the first exploration of the impact of observing strategy on photometric supernova classification with LSST.
The commissioning team for the Vera C. Rubin observatory is planning a set of engineering and science verification observations with the Legacy Survey of Space and Time (LSST) commissioning camera and then the Rubin Observatory LSST Camera. The time
We report a framework for spectroscopic follow-up design for optimizing supernova photometric classification. The strategy accounts for the unavoidable mismatch between spectroscopic and photometric samples, and can be used even in the beginning of a
Cosmology with Type Ia supernovae heretofore has required extensive spectroscopic follow-up to establish a redshift. Though tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render this appro
Current and future optical and near-infrared wide-field surveys have the potential of finding kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The a
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscop