ترغب بنشر مسار تعليمي؟ اضغط هنا

Szegedy Walk Unitaries for Quantum Maps

72   0   0.0 ( 0 )
 نشر من قبل Kristan Temme
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Szegedy developed a generic method for quantizing classical algorithms based on random walks [Proceedings of FOCS, 2004, pp. 32-41]. A major contribution of his work was the construction of a walk unitary for any reversible random walk. Such unitary posses two crucial properties: its eigenvector with eigenphase $0$ is a quantum sample of the limiting distribution of the random walk and its eigenphase gap is quadratically larger than the spectral gap of the random walk. It was an open question if it is possible to generalize Szegedys quantization method for stochastic maps to quantum maps. We answer this in the affirmative by presenting an explicit construction of a Szegedy walk unitary for detailed balanced Lindbladians -- generators of quantum Markov semigroups -- and detailed balanced quantum channels. We prove that our Szegedy walk unitary has a purification of the fixed point of the Lindbladian as eigenvector with eigenphase $0$ and that its eigenphase gap is quadratically larger than the spectral gap of the Lindbladian. To construct the walk unitary we leverage a canonical form for detailed balanced Lindbladians showing that they are structurally related to Davies generators. We also explain how the quantization method for Lindbladians can be applied to quantum channels. We give an efficient quantum algorithm for quantizing Davies generators that describe many important open-system dynamics, for instance, the relaxation of a quantum system coupled to a bath. Our algorithm extends known techniques for simulating quantum systems on a quantum computer.



قيم البحث

اقرأ أيضاً

Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the pr esent work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as mirror entanglement. They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the stellar mirror entanglement associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
The problem of conditions on the initial correlations between the system and the environment that lead to completely positive (CP) or not-completely positive (NCP) maps has been studied by various authors. Two lines of study may be discerned: one con cerned with families of initial correlations that induce CP dynamics under the application of an arbitrary joint unitary on the system and environment; the other concerned with specific initial states that may be highly entangled. Here we study the latter problem, and highlight the interplay between the initial correlations and the unitary applied. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.
122 - C.-I. Chou , C.-L. Ho 2013
We present numerical study of a model of quantum walk in periodic potential on the line. We take the simple view that different potentials affect differently the way the coin state of the walker is changed. For simplicity and definiteness, we assume the walkers coin state is unaffected at sites without potential, and is rotated in an unbiased way according to Hadamard matrix at sites with potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks were studied numerically. It is found that of the six cases, four cases display significant localization effect, where the walker is confined in the neighborhood of the origin for sufficiently long times. Associated with such localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position de gree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
Quantum Stochastic Walks (QSW) allow for a generalization of both quantum and classical random walks by describing the dynamic evolution of an open quantum system on a network, with nodes corresponding to quantum states of a fixed basis. We consider the problem of quantum state discrimination on such a system, and we solve it by optimizing the network topology weights. Finally, we test it on different quantum network topologies and compare it with optimal theoretical bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا