ﻻ يوجد ملخص باللغة العربية
Wave functions of heavy-hole excitons in GaAs/Al$_{0.3}$Ga$_{0.7}$As square quantum wells (QWs) of various widths are calculated by the direct numerical solution of a three-dimensional Schrodinger equation using a finite-difference scheme. These wave functions are then used to determine the exciton-exciton, exciton-electron and exciton-hole fermion exchange constants in a wide range of QW widths (5-150 nm). Additionally, the spin-dependent matrix elements of elastic exciton-exciton, exciton-electron and exciton-hole scattering are calculated. From these matrix elements, the collisional broadening of the exciton resonance is obtained within the Born approximation as a function of the areal density of excitons, electrons and holes respectively for QW widths of 5, 15, 30 and 50 nm. The obtained numerical results are compared with other theoretical works.
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. Fr
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction
We study the evolution of the absorption spectrum of a modulation doped GaAs/AlGaAs semiconductor quantum well with decreasing the carrier density. We find that there is a critical density which marks the transition from a Fermi edge singularity to a
We present a fully three-dimensional study of the multiexciton optical response of vertically coupled GaN-based quantum dots via a direct-diagonalization approach. The proposed analysis is crucial in understanding the fundamental properties of few-pa
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790