ﻻ يوجد ملخص باللغة العربية
We present a joint experimental and theoretical characterization of the magnetic properties of coordination clusters with an antiferromagnetic core of four magnetic ions. Two different compounds are analyzed, with Co and Mn ions in the core. While both molecules are antiferromagnetic, they display different sensitivities to external magnetic field, according to the different strength of the intra-molecular magnetic coupling. In particular, the dependence of the magnetization versus field of the two molecules switches with temperatures: at low temperature the magnetization is smaller in {Mn$_4$}, while the opposite happens at high temperature. Through a detailed analysis of the electronic and magnetic properties of the two compounds we identify a stronger magnetic interaction between the magnetic ions in {Mn$_4$} with respect to {Co$_4$}. Moreover {Co$_4$} displays not negligible spin-orbit related effects that could affect the spin lifetime in future antiferromagnetic spintronic applications. We highlight the necessity to account for these spin-orbit effects for a reliable description of these compounds.
New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 oC. All samples are monoclinic, space group P21/n, as obtained from Rietveld analysis of X-r
We performed susceptibility, magnetization, specific heat, and single crystal neutron diffraction measurements on single crystalline BaMn$_2$Si$_2$O$_7$. Based on the results, we revisited its spin structure with a more accurate solution and construc
From magnetic deflection experiments on isolated Co doped Nb clusters we made the interesting observation of some clusters being magnetic, while others appear to be non-magnetic. There are in principle two explanations for this behavior. Either the l
Muon spin relaxation measurements are reported on samples of dimethylammonium metal formates containing magnetic divalent nickel, cobalt, manganese, and copper ions. These hybrid organic-inorganic perovskites exhibit weak ferromagnetism and are, apar
In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory. Variou