ﻻ يوجد ملخص باللغة العربية
Vision and Language Navigation (VLN) requires an agent to navigate to a target location by following natural language instructions. Most of existing works represent a navigation candidate by the feature of the corresponding single view where the candidate lies in. However, an instruction may mention landmarks out of the single view as references, which might lead to failures of textual-visual matching of existing methods. In this work, we propose a multi-module Neighbor-View Enhanced Model (NvEM) to adaptively incorporate visual contexts from neighbor views for better textual-visual matching. Specifically, our NvEM utilizes a subject module and a reference module to collect contexts from neighbor views. The subject module fuses neighbor views at a global level, and the reference module fuses neighbor objects at a local level. Subjects and references are adaptively determined via attention mechanisms. Our model also includes an action module to utilize the strong orientation guidance (e.g., turn left) in instructions. Each module predicts navigation action separately and their weighted sum is used for predicting the final action. Extensive experimental results demonstrate the effectiveness of the proposed method on the R2R and R4R benchmarks against several state-of-the-art navigators, and NvEM even beats some pre-training ones. Our code is available at https://github.com/MarSaKi/NvEM.
Interaction and navigation defined by natural language instructions in dynamic environments pose significant challenges for neural agents. This paper focuses on addressing two challenges: handling long sequence of subtasks, and understanding complex
Recently, numerous algorithms have been developed to tackle the problem of vision-language navigation (VLN), i.e., entailing an agent to navigate 3D environments through following linguistic instructions. However, current VLN agents simply store thei
Vision-and-language navigation (VLN) aims to enable embodied agents to navigate in realistic environments using natural language instructions. Given the scarcity of domain-specific training data and the high diversity of image and language inputs, th
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments. One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused
Vision-language Navigation (VLN) tasks require an agent to navigate step-by-step while perceiving the visual observations and comprehending a natural language instruction. Large data bias, which is caused by the disparity ratio between the small data