ترغب بنشر مسار تعليمي؟ اضغط هنا

Some inequalities on Finsler manifolds with weighted Ricci curvature bounded below

96   0   0.0 ( 0 )
 نشر من قبل Xinyue Cheng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we establish a relative volume comparison of Bishop-Gromov type. As one of the applications, we obtain an upper bound for volumes of the Finsler manifolds. Further, when the S-curvature is bounded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds. Finally, we obtain a sharp Poincar{e}-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a sharp lower bound for the first eigenvalue on the Finsler manifolds.



قيم البحث

اقرأ أيضاً

We survey some recent developments in the study of collapsing Riemannian manifolds with Ricci curvature bounded below, especially the locally bounded Ricci covering geometry and the Ricci flow smoothing techniques. We then prove that if a Calabi-Yau manifold is sufficiently volume collapsed with bounded diameter and sectional curvature, then it admits a Ricci-flat Kahler metrictogether with a compatible pure nilpotent Killing structure: this is related to an open question of Cheeger, Fukaya and Gromov.
306 - Hui-Ling Gu 2007
In this paper, we proved a compactness result about Riemannian manifolds with an arbitrary pointwisely pinched Ricci curvature tensor.
91 - Lei Ni , Qingsong Wang , 2018
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized ve ctor bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.
We study collapsed manifolds with Ricci bounded covering geometry i.e., Ricci curvature is bounded below and the Riemannian universal cover is non-collapsed or consists of uniform Reifenberg points. Via Ricci flows techniques, we partially extend the nilpotent structural results of Cheeger-Fukaya-Gromov, on collapsed manifolds with (sectional curvature) local bounded covering geometry, to manifolds with (global) Ricci boundedcovering geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا