ترغب بنشر مسار تعليمي؟ اضغط هنا

An Overview and Experimental Study of Learning-based Optimization Algorithms for Vehicle Routing Problem

104   0   0.0 ( 0 )
 نشر من قبل Guohua Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vehicle routing problem (VRP) is a typical discrete combinatorial optimization problem, and many models and algorithms have been proposed to solve VRP and variants. Although existing approaches has contributed a lot to the development of this field, these approaches either are limited in problem size or need manual intervening in choosing parameters. To tackle these difficulties, many studies consider learning-based optimization algorithms to solve VRP. This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches. We design three part experiments to justly evaluate performance of four representative learning-based optimization algorithms and conclude that combining heuristic search can effectively improve learning ability and sampled efficiency of LBO models. Finally we point out that research trend of LBO algorithms is to solve large-scale and multiple constraints problems from real world.



قيم البحث

اقرأ أيضاً

This paper deals with generating of an optimized route for multiple Vehicle routing Problems (mVRP). We used a methodology of clustering the given cities depending upon the number of vehicles and each cluster is allotted to a vehicle. k- Means cluste ring algorithm has been used for easy clustering of the cities. In this way the mVRP has been converted into VRP which is simple in computation compared to mVRP. After clustering, an optimized route is generated for each vehicle in its allotted cluster. Once the clustering had been done and after the cities were allocated to the various vehicles, each cluster/tour was taken as an individual Vehicle Routing problem and the steps of Genetic Algorithm were applied to the cluster and iterated to obtain the most optimal value of the distance after convergence takes place. After the application of the various heuristic techniques, it was found that the Genetic algorithm gave a better result and a more optimal tour for mVRPs in short computational time than other Algorithms due to the extensive search and constructive nature of the algorithm.
The Vehicle Routing Problem (VRP) is one of the most intensively studied combinatorial optimisation problems for which numerous models and algorithms have been proposed. To tackle the complexities, uncertainties and dynamics involved in real-world VR P applications, Machine Learning (ML) methods have been used in combination with analytical approaches to enhance problem formulations and algorithmic performance across different problem solving scenarios. However, the relevant papers are scattered in several traditional research fields with very different, sometimes confusing, terminologies. This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems. Specifically, we review the emerging research streams on ML-assisted VRP modelling and ML-assisted VRP optimisation. We conclude that ML can be beneficial in enhancing VRP modelling, and improving the performance of algorithms for both online and offline VRP optimisations. Finally, challenges and future opportunities of VRP research are discussed.
Graph routing problems have been investigated extensively in operations research, computer science and engineering due to their ubiquity and vast applications. In this paper, we study constant approximation algorithms for some variations of the gener al cluster routing problem. In this problem, we are given an edge-weighted complete undirected graph $G=(V,E,c),$ whose vertex set is partitioned into clusters $C_{1},dots ,C_{k}.$ We are also given a subset $V$ of $V$ and a subset $E$ of $E.$ The weight function $c$ satisfies the triangle inequality. The goal is to find a minimum cost walk $T$ that visits each vertex in $V$ only once, traverses every edge in $E$ at least once and for every $iin [k]$ all vertices of $C_i$ are traversed consecutively.
Order dispatching and driver repositioning (also known as fleet management) in the face of spatially and temporally varying supply and demand are central to a ride-sharing platform marketplace. Hand-crafting heuristic solutions that account for the d ynamics in these resource allocation problems is difficult, and may be better handled by an end-to-end machine learning method. Previous works have explored machine learning methods to the problem from a high-level perspective, where the learning method is responsible for either repositioning the drivers or dispatching orders, and as a further simplification, the drivers are considered independent agents maximizing their own reward functions. In this paper we present a deep reinforcement learning approach for tackling the full fleet management and dispatching problems. In addition to treating the drivers as individual agents, we consider the problem from a system-centric perspective, where a central fleet management agent is responsible for decision-making for all drivers.
Recent researches show that machine learning has the potential to learn better heuristics than the one designed by human for solving combinatorial optimization problems. The deep neural network is used to characterize the input instance for construct ing a feasible solution incrementally. Recently, an attention model is proposed to solve routing problems. In this model, the state of an instance is represented by node features that are fixed over time. However, the fact is, the state of an instance is changed according to the decision that the model made at different construction steps, and the node features should be updated correspondingly. Therefore, this paper presents a dynamic attention model with dynamic encoder-decoder architecture, which enables the model to explore node features dynamically and exploit hidden structure information effectively at different construction steps. This paper focuses on a challenging NP-hard problem, vehicle routing problem. The experiments indicate that our model outperforms the previous methods and also shows a good generalization performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا