ﻻ يوجد ملخص باللغة العربية
The troposphere is one of the atmospheric layers where most weather phenomena occur. Temperature variations in the troposphere, especially at 500 hPa, a typical level of the middle troposphere, are significant indicators of future weather changes. Numerical weather prediction is effective for temperature prediction, but its computational complexity hinders a timely response. This paper proposes a novel temperature prediction approach in framework ofphysics-informed deep learning. The new model, called PGnet, builds upon a generative neural network with a mask matrix. The mask is designed to distinguish the low-quality predicted regions generated by the first physical stage. The generative neural network takes the mask as prior for the second-stage refined predictions. A mask-loss and a jump pattern strategy are developed to train the generative neural network without accumulating errors during making time-series predictions. Experiments on ERA5 demonstrate that PGnet can generate more refined temperature predictions than the state-of-the-art.
Data assimilation for parameter and state estimation in subsurface transport problems remains a significant challenge due to the sparsity of measurements, the heterogeneity of porous media, and the high computational cost of forward numerical models.
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems modeled by Partial Differential Equations (PDEs). This paper introduces IDRLnet, a Python toolbox for modeling and solving prob
This work investigates the framework and performance issues of the composite neural network, which is composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph for solving complica
Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. Deep-learning methods, however, find very challenging learning stiff dynamics. In this paper, we develop DAE-PINN, the first effect
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems. The concept of PINNs is expanded to learn not only the solution of one particular differential equation but the solutions