ﻻ يوجد ملخص باللغة العربية
In this article, we present a new construction of evaluation codes in the Hamming metric, which we call twisted Reed-Solomon codes. Whereas Reed-Solomon (RS) codes are MDS codes, this need not be the case for twisted RS codes. Nonetheless, we show that our construction yields several families of MDS codes. Further, for a large subclass of (MDS) twisted RS codes, we show that the new codes are not generalized RS codes. To achieve this, we use properties of Schur squares of codes as well as an explicit description of the dual of a large subclass of our codes. We conclude the paper with a description of a decoder, that performs very well in practice as shown by extensive simulation results.
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes.
Guo, Kopparty and Sudan have initiated the study of error-correcting codes derived by lifting of affine-invariant codes. Lifted Reed-Solomon (RS) codes are defined as the evaluation of polynomials in a vector space over a field by requiring their res
A linear code is called an MDS self-dual code if it is both an MDS code and a self-dual code with respect to the Euclidean inner product. The parameters of such codes are completely determined by the code length. In this paper, we consider new constr
Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). L
Two concatenated coding schemes incorporating algebraic Reed-Solomon (RS) codes and polarization-adjusted convolutional (PAC) codes are proposed. Simulation results show that at a bit error rate of $10^{-5}$, a concatenated scheme using RS and PAC co