ﻻ يوجد ملخص باللغة العربية
The Wigner time delay of slow particles in the process of their elastic scattering by complex targets formed by several zero-range potentials is investigated. It is shown that at asymptotically large distances from the target, the Huygens-Fresnel interference pattern formed by spherical waves emitted by each of the potentials is transformed into a system of spherical waves generated by the geometric center of the target. These functions determine flows of particles in and out through the surface of the sphere surrounding the target. The energy derivatives of phase shifts of these functions are the partial Wigner time delay. General formulas that connect the s-phase shifts of particle scattering by each of the zero-range potentials with the phases of particle scattering by the potential cluster forming the target are obtained. Model targets consisting of two-, three- and 4-centers are considered. It is assumed that these targets are built from identical delta-potentials with equal distances between their centers. The partial Wigner time delay of slow particles by considered targets are obtained. We apply the derived general formulas to consideration of electron scattering by atomic clusters that trap electron near the target, and by calculating the times delay of mesons scattered by few-nucleons systems.
As demonstrated in our previous work [J. Chem. Phys. 149, 174109 (2018)], the kinetic energy imparted to a quantum rotor by a non-resonant electromagnetic pulse with a Gaussian temporal profile exhibits quasi-periodic drops as a function of the pulse
We investigate the photo-doubleionization of $H_2$ molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast
We predict the existence of a universal class of ultralong-range Rydberg molecular states whose vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical origin of these exotic molecules, accurately predicts thei
The rotational dynamics of particles subject to external illumination is found to produce light amplification and inelastic scattering at high rotation velocities. Light emission at frequencies shifted with respect to the incident light by twice the
The quantum vacuum fluctuations of a neutral scalar field induced by background zero-range potentials concentrated on a flat hyperplane of co-dimension $1$ in $(d+1)$-dimensional Minkowski spacetime are investigated. Perfectly reflecting and semitran