ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of compact sources in galaxy clusters using MUSTANG2

69   0   0.0 ( 0 )
 نشر من قبل Simon Dicker
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zeldovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a sources flux density, spectral index, and angular separation from the clusters center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population.



قيم البحث

اقرأ أيضاً

The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, consid ering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters.
It is well established that particle acceleration by shocks and turbulence in the intra-cluster medium can produce cluster-scale synchrotron emitting sources. However, the detailed physics of these particle acceleration processes is still not well un derstood. One of the main open questions is the role of fossil relativistic electrons that have been deposited in the intra-cluster medium by radio galaxies. These synchrotron-emitting electrons are very difficult to study, as their radiative life time is only tens of Myrs at GHz frequencies, and are therefore a relatively unexplored population. Despite the typical steep radio spectrum due to synchrotron losses, these fossil electrons are barely visible even at radio frequencies well below a GHz. However, when a pocket of fossil radio plasma is compressed, it boosts the visibility at sub-GHz frequencies, creating so-called radio phoenices. This compression can be the result of bulk motion and shocks in the ICM due to merger activity. In this paper, we demonstrate the discovery potential of low frequency radio sky surveys to find and study revived fossil plasma sources in galaxy clusters. We used the 150~MHz TGSS and 1.4 GHz NVSS sky surveys to identify candidate radio phoenices. A subset of three candidates were studied in detail using deep multi-band radio observations (LOFAR and GMRT), X-ray (textit{Chandra} or textit{XMM-Newton}) and archival optical observations. Two of the three sources are new discoveries. Using these observations, we identified common observational properties (radio morphology, ultra-steep spectrum, X-ray luminosity, dynamical state) that will enable us to identify this class of sources more easily, and help to understand the physical origin of these sources.
Diffuse cluster radio sources, in the form of radio halos and relics, reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). These cosmic rays are thought to be (re-)accelerated through ICM turbulence and shock waves generated by cluster merger events. Here we characterize the presence of diffuse radio emission in known galaxy clusters in the HETDEX Spring Field, covering 424 deg$^2$. For this, we developed a method to extract individual targets from LOFAR observations processed with the LoTSS DDF-pipeline. This procedure enables improved calibration and joint imaging and deconvolution of multiple pointings of selected targets. The calibration strategy can also be used for LOFAR Low-Band Antenna (LBA) and international-baseline observations. The fraction of Planck PSZ2 clusters with any diffuse radio emission apparently associated with the ICM is $73pm17%$. We detect a total of 10 radio halos and 12 candidate halos in the HETDEX Spring Field. Five clusters host radio relics. The fraction of radio halos in Planck PSZ2 clusters is $31pm11%$, and $62pm15%$ when including the candidate radio halos. Based on these numbers, we expect that there will be at least $183 pm 65$ radio halos found in the LoTSS survey in PSZ2 clusters, in agreement with predictions. The integrated flux densities for the radio halos were computed by fitting exponential models to the radio images. From these flux densities, we determine the cluster mass (M$_{500}$) and Compton Y parameter (Y$_{500}$) 150 MHz radio power (P$_{rm{150 MHz}}$) scaling relations for Planck PSZ2-detected radio halos. We find that the slopes of these relations are steeper than those determined from the 1.4 GHz radio powers. However, considering the uncertainties this is not a statistically significant result.
The properties of galaxy clusters as a function of redshift can be utilized as an important cosmological tool. We present initial results from a program of follow-up observations of the Sunyaev-Zeldovich effect (SZE) in high redshift galaxy clusters detected at infrared wavelengths in the Massive and Distant Clusters of WISE Survey (MaDCoWS). Using typical on-source integration times of 3-4 hours per cluster, MUSTANG2 on the Green Bank Telescope was able to measure strong detections of SZE decrements and statistically significant masses on 14 out of 16 targets. On the remaining two, weaker (3.7 sigma) detections of the SZE signal and strong upper limits on the masses were obtained. In this paper we present masses and pressure profiles of each target and outline the data analysis used to recover these quantities. Of the clusters with strong detections, three show significantly flatter pressure profiles while, from the MUSTANG2 data, five others show signs of disruption at their cores. However, outside of the cores of the clusters, we were unable to detect significant amounts of asymmetry. Finally, there are indications that the relationship between optical richness used by MaDCoWS and SZE-inferred mass may be significantly flatter than indicated in previous studies.
We report results of the first phase of observations with the Australia Telescope Compact Array (ATCA) at 5 and 9 GHz of the fields around 411 gamma-ray sources with declinations < +10 deg detected by Fermi but marked as unassociated in the 2FGL cata logue. We have detected 424 sources with flux densities in a range of 2 mJy to 6 Jy that lie within the 99 per cent localisation uncertainty of 283 gamma-ray sources. Of these, 146 objects were detected in both the 5 and 9 GHz bands. We found 84 sources in our sample with a spectral index flatter than -0.5. The majority of detected sources are weaker than 100 mJy and for this reason were not found in previous surveys. Approximately 1/3 of our sample, 128 objects, have the probability of being associated by more than 10 times than the probability of being a background source found in the vicinity of a gamma-ray object by chance. We present the catalogue of positions of these sources, estimates of their flux densities and spectral indices where available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا